Taylor State Merging at SSX: Experiment and Simulation
Abstract
:1. Introduction
2. SSX Taylor State Merging Configuration
2.1. Experimental Setup
2.2. Diagnostics
3. Experimental Results
3.1. Theoretical Background
3.2. Counter- and Co-Helicity Merging
4. Simulation Results
4.1. Dedalus Framework
4.2. Merged Taylor States
5. Discussion and Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MHD | magnetohydrodynamics |
MIF | magnetoinertial fusion |
SSX | Swarthmore Spheromak Experiment |
IDS | Ion Doppler spectroscopy |
VUV | vacuum ultraviolet. EOS equation of state |
PMT | photomultiplier tube |
HeNe | Helium-Neon |
References
- Taylor, J.B. Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields. Phys. Rev. Lett. 1974, 33, 1139. [Google Scholar] [CrossRef]
- Taylor, J.B. Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys. 1986, 58, 741. [Google Scholar] [CrossRef]
- Cothran, C.D.; Brown, M.R.; Gray, T.; Schaffer, M.J.; Marklin, G. Observation of a Helical Self-Organized State in a Compact Toroidal Plasma. Phys. Rev. Lett. 2009, 103, 215002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, T.; Brown, M.R.; Dandurand, D. Observation of a Relaxed Plasma State in a Quasi-Infinite Cylinder. Phys. Rev. Lett. 2013, 110, 085002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, M.; Barbano, L.J.; Suen-Lewis, E.M.; Shrock, J.E.; Light, A.D.; Brown, M.R.; Schaffner, D.A. Measuring the equations of state in a relaxed magnetohydrodynamic plasma. Phys. Rev. E 2018, 97, 011202. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Barbano, L.J.; Suen-Lewis, E.M.; Shrock, J.E.; Light, A.D.; Schaffner, D.A.; Brown, M.R.; Woodruff, S.; Meyer, T. Magnetothermodynamics: Measurements of the thermodynamic properties in a relaxed magnetohydrodynamic plasma. J. Plasma Phys. 2018, 84, 905840114. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.R.; Kaur, M. Magnetothermodynamics in SSX: Measuring the Equations of State of a Compressible Magnetized Plasma. Fusion Sci. Technol. 2019, 75, 275. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.R.; Schaffner, D.A. SSX MHD plasma wind tunnel. J. Plasma Phys. 2015, 81, 345810302. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.R.; Schaffner, D.A. Laboratory sources of turbulent plasma: A unique MHD plasma wind tunnel. Plasma Sources Sci. Technol. 2014, 23, 063001. [Google Scholar] [CrossRef] [Green Version]
- Lindemuth, I.R.; Reinovsky, R.E.; Chrien, R.E.; Christian, J.M.; Ekdahl, C.A.; Goforth, J.H.; Haight, R.C.; Idzorek, G.; King, N.S.; Kirkpatrick, R.C.; et al. Target Plasma Formation for Magnetic Compression/Magnetized Target Fusion. Phys. Rev. Lett. 1995, 75, 1953. [Google Scholar] [CrossRef]
- Wurden, G.A.; Hsu, S.C.; Intrator, T.P.; Grabowski, T.C.; Degnan, J.H.; Domonkos, M.; Turchi, P.J.; Campbell, E.M.; Sinars, D.B.; Herrmann, M.C.; et al. Magneto-Inertial Fusion. J. Fusion Energy 2016, 35, 69. [Google Scholar] [CrossRef] [Green Version]
- Degnan, J.H.; Amdahl, D.J.; Domonkos, M.; Lehr, F.M.; Grabowski, C.; Robinson, P.R.; Ruden, E.L.; White, W.M.; Wurden, G.A.; Intrator, T.P.; et al. Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment. Nucl. Fusion 2013, 53, 093003. [Google Scholar] [CrossRef]
- Laberge, M. Experimental Results for an Acoustic Driver for MTF. J. Fusion Energy 2009, 28, 179. [Google Scholar] [CrossRef]
- Gomez, M.R.; Slutz, S.A.; Sefkow, A.B.; Sinars, D.B.; Hahn, K.D.; Hansen, S.B.; Harding, E.C.; Knapp, P.F.; Schmit, P.F.; Jennings, C.A.; et al. Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion. Phys. Rev. Lett. 2014, 113, 155003. [Google Scholar] [CrossRef]
- Gomez, M.R.; Slutz, S.A.; Sefkow, A.B.; Hahn, K.D.; Hansen, S.B.; Knapp, P.F.; Schmit, P.F.; Ruiz, C.L.; Sinars, D.B.; Harding, E.C.; et al. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments. Phys. Plasmas 2015, 22, 056306. [Google Scholar] [CrossRef]
- Landreman, M.; Cothran, C.D.; Brown, M.R.; Kostora, M.; Slough, J.T. Rapid Multiplexed Data Acquisition: Application to Three-dimensional Magnetic Field Measurements in a Turbulent Laboratory Plasma. Rev. Sci. Instrum. 2003, 74, 2361. [Google Scholar] [CrossRef]
- Cothran, C.D.; Landreman, M.; Brown, M.R.; Matthaeus, W.H. Three-dimensional structure of magnetic reconnection in a laboratory plasma. Geophys. Res. Lett. 2003, 30, 1213. [Google Scholar] [CrossRef] [Green Version]
- Cothran, C.D.; Fung, J.; Brown, M.R.; Schaffer, M.J. Fast, High Resolution Echelle Spectroscopy of a Laboratory Plasma. Rev. Sci. Instrum. 2006, 77, 063504. [Google Scholar] [CrossRef]
- Kaur, M.; Gelber, K.D.; Light, A.D.; Brown, M.R. Temperature and Lifetime Measurements in the SSX Wind Tunnel. Plasma 2018, 1, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Huba, J.D. NRL Plasma Formulary; NRL/PU/6790–16-614; The Office of Naval Research: Washington, DC, USA, 2016. [Google Scholar]
- Yamada, M.; Kulsrud, R.; Ji, H. Magnetic Reconnection. Rev. Mod. Phys. 2010, 82, 603. [Google Scholar] [CrossRef]
- Brown, M.R. Experimental Studies of Magnetic Reconnection. Phys. Plasmas 1999, 6, 1717. [Google Scholar] [CrossRef] [Green Version]
- Myers, C.E.; Belova, E.V.; Brown, M.R.; Gray, T.; Cothran, C.D.; Schaffer, M.J. Three-Dimensional MHD Simulations of Counter-Helicity Spheromak Merging in the Swarthmore Spheromak Experiment. Phys. Plasmas 2011, 18, 112512. [Google Scholar] [CrossRef]
- Ono, Y.; Yamada, M.; Akao, T.; Tajima, T.; Matsumoto, R. Ion Acceleration and Direct Ion Heating in Three-Component Magnetic Reconnection. Phys. Rev. Lett. 1996, 76, 3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, H.; Yamada, M.; Hsu, S.; Kulsrud, R. Experimental Test of the Sweet-Parker Model of Magnetic Reconnection. Phys. Rev. Lett. 1998, 80, 3256. [Google Scholar] [CrossRef]
- Shay, M.A.; Drake, J.F.; Rogers, B.N.; Denton, R.E. The scaling of collisionless, magnetic reconnection for large systems. Geophys. Res. Lett. 1999, 26, 2163. [Google Scholar] [CrossRef] [Green Version]
- Birn, J.; Drake, J.F.; Shay, M.A.; Rogers, B.N.; Denton, R.E.; Hesse, M.; Kuznetsova, M.; Ma, Z.W.; Bhattacharjee, A.; Otto, A.; et al. Geospace Environmental Modeling (GEM) Magnetic Reconnection Challenge. J. Geophys. Res. Space Phys. 2001, 106, 3715. [Google Scholar] [CrossRef]
- Cassak, P.; Liu, Y.; Shay, M. A review of the 0.1 reconnection rate problem. J. Plasma Phys. 2017, 83, 715830501. [Google Scholar] [CrossRef]
- Brown, M.R.; Cothran, C.D.; Gray, T.; Myers, C.E.; Belova, E.V. Spectroscopic observation of simultaneous bi-directional reconnection outflows in a laboratory plasma. Phys. Plasmas 2012, 19, 080704. [Google Scholar] [CrossRef] [Green Version]
- Burns, K.J.; Vasil, M.G.; Jeffrey, S.O.; Lecoanet, D.; Benjamin, P.B. Dedalus: A Flexible Framework for Numerical Simulations with Spectral Methods. arXiv 2019, arXiv:1905.10388v2. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, M.; Gelber, K.; Mebratu, M. Taylor State Merging at SSX: Experiment and Simulation. Plasma 2020, 3, 27-37. https://doi.org/10.3390/plasma3010004
Brown M, Gelber K, Mebratu M. Taylor State Merging at SSX: Experiment and Simulation. Plasma. 2020; 3(1):27-37. https://doi.org/10.3390/plasma3010004
Chicago/Turabian StyleBrown, Michael, Kaitlin Gelber, and Matiwos Mebratu. 2020. "Taylor State Merging at SSX: Experiment and Simulation" Plasma 3, no. 1: 27-37. https://doi.org/10.3390/plasma3010004
APA StyleBrown, M., Gelber, K., & Mebratu, M. (2020). Taylor State Merging at SSX: Experiment and Simulation. Plasma, 3(1), 27-37. https://doi.org/10.3390/plasma3010004