# The Effect of Magnetic Field Strength and Geometry on the Deposition Rate and Ionized Flux Fraction in the HiPIMS Discharge

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

#### 3.1. Deposition Rate

#### 3.2. Ionized Flux Fraction

## 4. Discussion

#### 4.1. Discharge Physics

#### 4.2. Deposition Rate and Ionized Flux Fraction

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Helmersson, U.; Lattemann, M.; Bohlmark, J.; Ehiasarian, A.P.; Gudmundsson, J.T. Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films
**2006**, 513, 1–24. [Google Scholar] [CrossRef][Green Version] - Gudmundsson, J.T.; Brenning, N.; Lundin, D.; Helmersson, U. The high power impulse magnetron sputtering discharge. J. Vac. Sci. Technol. A
**2012**, 30, 030801. [Google Scholar] [CrossRef] - Kouznetsov, V.; Macák, K.; Schneider, J.M.; Helmersson, U.; Petrov, I. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol.
**1999**, 122, 290–293. [Google Scholar] [CrossRef] - Kubart, T.; Čada, M.; Lundin, D.; Hubička, Z. Investigation of ionized metal flux fraction in HiPIMS discharges with Ti and Ni targets. Surf. Coat. Technol.
**2014**, 238, 152–157. [Google Scholar] [CrossRef] - Lundin, D.; Čada, M.; Hubička, Z. Ionization of sputtered Ti, Al, and C coupled with plasma characterization in HiPIMS. Plasma Sources Sci. Technol.
**2015**, 24, 035018. [Google Scholar] [CrossRef] - Lundin, D.; Sarakinos, K. An introduction to thin film processing using high power impulse magnetron sputtering. J. Mater. Res.
**2012**, 27, 780–792. [Google Scholar] [CrossRef] - Anders, A. Deposition rates of high power impulse magnetron sputtering: Physics and economics. J. Vac. Sci. Technol. A
**2010**, 28, 783–790. [Google Scholar] [CrossRef] - Samuelsson, M.; Lundin, D.; Jensen, J.; Raadu, M.A.; Gudmundsson, J.T.; Helmersson, U. On the film density using high power impulse magnetron sputtering. Surf. Coat. Technol.
**2010**, 202, 591–596. [Google Scholar] [CrossRef] - Christie, D.J. Target material pathways model for high power pulsed magnetron sputtering. J. Vac. Sci. Technol. A
**2005**, 23, 330–335. [Google Scholar] [CrossRef] - Bradley, J.W.; Thompson, S.; Gonzalvo, Y.A. Measurement of the plasma potential in a magnetron discharge and the prediction of the electron drift speeds. Plasma Sources Sci. Technol.
**2001**, 10, 490–501. [Google Scholar] [CrossRef] - Rauch, A.; Mendelsberg, R.J.; Sanders, J.M.; Anders, A. Plasma potential mapping of high power impulse magnetron sputtering discharges. J. Appl. Phys.
**2012**, 111, 083302. [Google Scholar] [CrossRef][Green Version] - Sigurjónsson, P. Spatial and Temporal Variation of the Plasma Parameters in a High Power Impulse Magnetron Sputtering (HiPIMS) Discharge. Master’s Thesis, University of Iceland, Reykjavik, Iceland, 2008. [Google Scholar]
- Mishra, A.; Kelly, P.J.; Bradley, J.W. The evolution of the plasma potential in a HiPIMS discharge and its relationship to deposition rate. Plasma Sources Sci. Technol.
**2010**, 19, 045014. [Google Scholar] - Liebig, B.; Bradley, J.W. Space charge, plasma potential and electric field distributions in HiPIMS discharges of varying configuration. Plasma Sources Sci. Technol.
**2013**, 22, 045020. [Google Scholar] [CrossRef] - Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Hecq, M. Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges. J. Appl. Phys.
**2006**, 99, 013307. [Google Scholar] [CrossRef] - Velicu, I.L.; Tiron, V.; Popa, G. Dynamics of the fast-HiPIMS discharge during FINEMET-type film deposition. Surf. Coat. Technol.
**2014**, 250, 57–64. [Google Scholar] [CrossRef] - Ferrec, A.; Kéraudy, J.; Jouan, P.Y. Mass spectrometry analyzes to highlight differences between short and long HiPIMS discharges. Appl. Surf. Sci.
**2016**, 390, 497–505. [Google Scholar] [CrossRef] - Čapek, J.; Hála, M.; Zabeida, O.; Klemberg-Sapieha, J.E.; Martinu, L. Deposition rate enhancement in HiPIMS without compromising the ionized fraction of the deposition flux. J. Phys. D Appl. Phys.
**2013**, 46, 205205. [Google Scholar] - Bradley, J.W.; Mishra, A.; Kelly, P.J. The effect of changing the magnetic field strength on HiPIMS deposition rates. J. Phys. D Appl. Phys.
**2015**, 48, 215202. [Google Scholar] [CrossRef] - Yu, H.; Meng, L.; Szott, M.M.; Meister, J.T.; Cho, T.S.; Ruzic, D.N. Investigation and optimization of the magnetic field configuration in high-power impulse magnetron sputtering. Plasma Sources Sci. Technol.
**2013**, 22, 045012. [Google Scholar] [CrossRef] - Raman, P.; Shchelkanov, I.A.; McLain, J.; Ruzic, D.N. High power pulsed magnetron sputtering: A method to increase deposition rate. J. Vac. Sci. Technol. A
**2015**, 33, 031304. [Google Scholar] [CrossRef] - Raman, P.; Shchelkanov, I.; McLain, J.; Cheng, M.; Ruzic, D.; Haehnlein, I.; Jurczyk, B.; Stubbers, R.; Armstrong, S. High Deposition Rate Symmetric Magnet Pack for High Power Pulsed Magnetron Sputtering. Surf. Coat. Technol.
**2016**, 293, 10–15. [Google Scholar] [CrossRef] - Ganesan, R.; Akhavan, B.; Dong, X.; McKenzie, D.R.; Bilek, M.M.M. External magnetic field increases both plasma generation and deposition rate in HiPIMS. Surf. Coat. Technol.
**2018**, 352, 671–679. [Google Scholar] [CrossRef] - Antonin, O.; Tiron, V.; Costin, C.; Popa, G.; Minea, T.M. On the HiPIMS benefits of multi-pulse operating mode. J. Phys. D Appl. Phys.
**2015**, 48, 015202. [Google Scholar] [CrossRef] - Barker, P.M.; Lewin, E.; Patscheider, J. Modified high power impulse magnetron sputtering process for increased deposition rate of titanium. J. Vac. Sci. Technol. A
**2013**, 31, 060604. [Google Scholar] [CrossRef] - Tesař, J.; Martan, J.; Rezek, J. On surface temperatures during high power pulsed magnetron sputtering using a hot target. Surf. Coat. Technol.
**2011**, 206, 1155–1159. [Google Scholar] [CrossRef] - Alami, J.; Maric, Z.; Busch, H.; Klein, F.; Grabowy, U.; Kopnarsk, M. Enhanced ionization sputtering: A concept for superior industrial coatings. Surf. Coat. Technol.
**2014**, 255, 43–51. [Google Scholar] [CrossRef] - Hajihoseini, H.; Gudmundsson, J.T. Vanadium and vanadium nitride thin films grown by high power impulse magnetron sputtering. J. Phys. D Appl. Phys.
**2017**, 50, 505302. [Google Scholar][Green Version] - McLain, J.; Raman, P.; Patel, D.; Spreadbury, R.; Uhlig, J.; Shchelkanov, I.; Ruzic, D.N. Linear magnetron HiPIMS high deposition rate magnet pack. Vacuum
**2018**, 155, 559–565. [Google Scholar] [CrossRef] - Poolcharuansin, P.; Bowes, M.; Petty, T.J.; Bradley, J.W. Ionized metal flux fraction measurements in HiPIMS discharges. J. Phys. D Appl. Phys.
**2012**, 45, 322001. [Google Scholar] [CrossRef] - Raman, P.; Weberski, J.; Cheng, M.; Shchelkanov, I.; Ruzic, D.N. A high power impulse magnetron sputtering model to explain high deposition rate magnetic field configurations. J. Appl. Phys.
**2016**, 120, 163301. [Google Scholar] [CrossRef][Green Version] - Vlček, J.; Burcalová, K. A phenomenological equilibrium model applicable to high-power pulsed magnetron sputtering. Plasma Sources Sci. Technol.
**2010**, 19, 065010. [Google Scholar] - Window, B.; Savvides, N. Charged particle fluxes from planar magnetron sputtering sources. J. Vac. Sci. Technol. A
**1986**, 4, 196–202. [Google Scholar] [CrossRef] - Wu, L.; Ko, E.; Dulkin, A.; Park, K.J.; Fields, S.; Leeser, K.; Meng, L.; Ruzic, D.N. Flux and energy analysis of species in hollow cathode magnetron ionized physical vapor deposition of copper. Rev. Sci. Instrum.
**2010**, 81, 123502. [Google Scholar] [CrossRef] [PubMed] - Green, K.M.; Hayden, D.B.; Juliano, D.R.; Ruzic, D.N. Determination of flux ionization fraction using a quartz crystal microbalance and a gridded energy analyzer in an ionized magnetron sputtering system. Rev. Sci. Instrum.
**1997**, 68, 4555–4560. [Google Scholar] [CrossRef] - Huo, C.; Lundin, D.; Gudmundsson, J.T.; Raadu, M.A.; Bradley, J.W.; Brenning, N. Particle-balance models for pulsed sputtering magnetrons. J. Phys. D Appl. Phys.
**2017**, 50, 354003. [Google Scholar] [CrossRef] - Butler, A.; Brenning, N.; Raadu, M.A.; Gudmundsson, J.T.; Minea, T.; Lundin, D. On three different ways to quantify the degree of ionization in sputtering magnetrons. Plasma Sources Sci. Technol.
**2018**, 27, 105005. [Google Scholar] - Huo, C.; Lundin, D.; Raadu, M.A.; Anders, A.; Gudmundsson, J.T.; Brenning, N. On sheath energization and Ohmic heating in sputtering magnetrons. Plasma Sources Sci. Technol.
**2013**, 22, 045005. [Google Scholar] [CrossRef] - Brenning, N.; Gudmundsson, J.T.; Lundin, D.; Minea, T.; Raadu, M.A.; Helmersson, U. The Role of Ohmic Heating in dc Magnetron Sputtering. Plasma Sources Sci. Technol.
**2016**, 25, 065024. [Google Scholar] - Thornton, J.A. Magnetron sputtering: Basic physics and application to cylindrical magnetrons. J. Vac. Sci. Technol.
**1978**, 15, 171–177. [Google Scholar] [CrossRef] - Brenning, N.; Gudmundsson, J.T.; Raadu, M.A.; Petty, T.J.; Minea, T.; Lundin, D. A unified treatment of self-sputtering, process gas recycling, and runaway for high power impulse sputtering magnetrons. Plasma Sources Sci. Technol.
**2017**, 26, 125003. [Google Scholar] [CrossRef] - Huo, C.; Lundin, D.; Raadu, M.A.; Anders, A.; Gudmundsson, J.T.; Brenning, N. On the road to self-sputtering in high power impulse magnetron sputtering: Particle balance and discharge characteristics. Plasma Sources Sci. Technol.
**2014**, 23, 025017. [Google Scholar] [CrossRef] - Bohlmark, J.; Lattemann, M.; Gudmundsson, J.T.; Ehiasarian, A.P.; Gonzalvo, Y.A.; Brenning, N.; Helmersson, U. The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge. Thin Solid Films
**2006**, 515, 1522–1526. [Google Scholar] [CrossRef] - Andersson, J.; Ehiasarian, A.P.; Anders, A. Observation of Ti
^{4+}ions in a high power impulse magnetron sputtering plasma. Appl. Phys. Lett.**2008**, 93, 071504. [Google Scholar]

**Figure 1.**A schematic of the magnetron sputtering chamber. The magnetron assembly and the probe holder with the m-QCM are mounted on movable bellows that can be controlled with millimeter precision. The red arrows indicate linear motion.

**Figure 2.**The measured magnetic field (flux density $\mathbf{B}$) and field line directions for the various magnetic field configurations. Normalized arrows indicate the magnetic field direction, the color scale indicates the magnitude of the magnetic field $\left|\mathbf{B}\right|=\sqrt{{B}_{r}^{2}+{B}_{z}^{2}}$. The value of ${B}_{r}$ above the race track at $z=11$ mm is given in the inset for each case.

**Figure 3.**The HiPIMS discharge current and voltage waveforms recorded for various magnetic field configurations: (

**a**) the discharge voltage in fixed voltage mode; (

**b**) the discharge current in fixed voltage mode; and (

**c**) discharge current in fixed peak current mode. The Ar pressure was set to 1 Pa. The pulse width was 100 $\mathsf{\mu}$s at an average power of 300 W.

**Figure 4.**The Ti deposition rate from both dcMS and HiPIMS discharges operated in fixed voltage mode and fixed peak current mode using various magnetic field configurations, measured at 70 mm axial distance over center of cathode. The magnet configurations on the x-axis are ordered from high $\left|\mathbf{B}\right|$ at the left to low $\left|\mathbf{B}\right|$ on the right. The recorded $|{B}_{r,\mathrm{rt}}|$ value above the race track was used as a measure of $\left|\mathbf{B}\right|$.

**Figure 5.**The RSD of Ti deposition rates from both dcMS and HiPIMS discharges operated in fixed voltage mode and fixed peak current mode using various magnetic field configurations. The rates measured at 70 mm axial distance over center, race track and edge of cathode. The magnet configurations on the x-axis are ordered with increasing ${z}_{\mathrm{null}}$ from left to right.

**Figure 6.**The Ti ionized flux fraction in a HiPIMS discharge using various magnet configurations measured at 70 mm axial distance over the center of the cathode. The discharge is operated in the HiPIMS fixed voltage and fixed peak current modes. The magnet configurations on the x-axis are ordered from high $\left|\mathbf{B}\right|$ at the left to low $\left|\mathbf{B}\right|$ on the right. The recorded $|{B}_{r,\mathrm{rt}}|$ value above the race track was used as a measure of $\left|\mathbf{B}\right|$.

**Figure 7.**The Ti ionized flux faction in a HiPIMS discharge using various magnet configurations measured at 30 mm axial distance over the center of the cathode. The discharge was operated in the HiPIMS fixed voltage and fixed peak current modes. The magnet configurations on the x-axis are ordered from high $\left|\mathbf{B}\right|$ at the left to low $\left|\mathbf{B}\right|$ on the right. The recorded $|{B}_{r,\mathrm{rt}}|$ value above the race track was used as a measure of $\left|\mathbf{B}\right|$.

**Figure 8.**The peak discharge current (left y-axis) when operating in fixed voltage mode (${V}_{\mathrm{D}}=625$ V) and the discharge voltage (right $y\u2013$axis) when operating in fixed peak discharge current mode (${I}_{\mathrm{D},\mathrm{max}}=40$ A) as a function of the magnetic field strength over the race track (${B}_{r,\mathrm{rt}}$ in Table 1). o all magnets moved together (C0E0, C5E5, and C10E10) and fixed voltage operation, + magnets mixed (C0E5, C5E0, C10E0 and C0E10) and fixed voltage operation, ◇ all magnets moved together (C0E0, C5E5, and C10E10) and fixed peak current operation, and △ magnets mixed (C0E5, C5E0, C10E0 and C0E10) and fixed peak current operation.

**Figure 9.**Experimentally determined combinations of ${F}_{\mathrm{DR}}$ and ${F}_{\mathrm{flux}}$ at $z=70$ mm, for all three radial positions, and for all magnetic field configurations. The configurations C0E0, C5E5, and C10E10 are denoted by o corresponding to variable $\left|\mathbf{B}\right|$ when all the magnets were moved together. The configurations C0E5, C5E0, C10E0 and C0E10 where the two magnets were moved relative to each other are denoted by x. The discharges were operated at constant voltage and constant average power. Lines of constant ${\alpha}_{\mathrm{t}}$ (solid blue lines) and constant ${\beta}_{\mathrm{t}}$ (dashed green lines), calculated using Equations (3) and (4), respectively, give approximate estimate of these parameters for the studied discharges.

**Figure 10.**(

**a**) The ionization probability ${\alpha}_{\mathrm{t}}$ and (

**b**) the back attraction probability ${\beta}_{\mathrm{t}}$ for the ions of the sputtered species versus the magnetic field strength above the race track $(r=25$ mm). o both magnets moved together (C0E0, C5E5, and C10E10) over race track in fixed voltage operation, x both magnets moved together (C0E0, C5E5, and C10E10) over center in fixed voltage operation, + magnets mixed (C0E5, C5E0, C10E0 and C0E10) over race track in fixed voltage operation, △ magnets mixed (C0E5, C5E0, C10E0 and C0E10) over center in fixed voltage operation, ◇ both magnets moved together (C0E0, C5E5, and C10E10) over center in fixed peak current operation, and □ magnets mixed (C0E5, C5E0, C10E0 and C0E10) over center in fixed peak current operation.

**Figure 11.**(

**a**) The ionization probability of the sputtered species; and (

**b**) the ionized flux fraction above the race track versus the peak discharge current. o both magnets moved together (C0E0, C5E5, and C10E10) over the race track in fixed voltage operation, x both magnets moved together (C0E0, C5E5, and C10E10) over center in fixed voltage operation, + magnets mixed (C0E5, C5E0, C10E0 and C0E10) over race track in fixed voltage operation, △ magnets mixed (C0E5, C5E0, C10E0 and C0E10) over center in fixed voltage operation, ◇ both magnets moved together (C0E0, C5E5, and C10E10) over center in fixed peak current operation, and □ magnets mixed (C0E5, C5E0, C10E0 and C0E10) over center in fixed peak current operation.

**Table 1.**Discharge operating parameters for the investigated dcMS and HiPIMS discharges in fixed voltage and in fixed peak current modes. The average discharge power was kept at 300 W for all the discharges. For HiPIMS discharges, the pulse length was 100 $\mathsf{\mu}$s while the pulse frequency was varied to maintain a constant averaged power. The absolute magnetic field strength and the degree of balancing was varied by displacing the center magnet (C) and the outer ring magnet at the target edge (E). Each configuration is referred to using the displaced distance (in mm) of each magnet from the target backing plate. In this notation, C0E0 refers to a magnetron configuration where the center and outer magnets touch the backing plate.

Magnet | dcMS | HiPIMS | HiPIMS | HiPIMS | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Fixed Voltage | Fixed Peak Current | Fixed Peak Current | |||||||||||

${\mathit{B}}_{\mathit{r},\mathbf{rt}}$ | ${\mathbf{z}}_{\mathbf{null}}$ | ${\mathit{V}}_{\mathbf{D}}$ | ${\mathit{I}}_{\mathbf{D}}$ | ${\mathit{V}}_{\mathbf{D}}$ | ${\mathit{I}}_{\mathbf{D}\mathbf{,}\mathbf{peak}}$ | ${\mathit{f}}_{\mathbf{pulse}}$ | ${\mathit{V}}_{\mathbf{D}}$ | ${\mathit{I}}_{\mathbf{D},\mathbf{peak}}$ | ${\mathit{f}}_{\mathbf{pulse}}$ | ${\mathit{V}}_{\mathbf{D}}$ | ${\mathit{I}}_{\mathbf{D}\mathbf{,}\mathbf{peak}}$ | ${\mathit{f}}_{\mathbf{pulse}}$ | |

[Gauss] | [mm] | [V] | [A] | [V] | [A] | [Hz] | [V] | [A] | [Hz] | [V] | [A] | [Hz] | |

C0E0 | 238 | 66 | 339 | 0.885 | 625 | 80 | 54 | 510 | 40 | 143 | 555 | 80 | 60 |

C0E5 | 217 | 70 | 308 | 0.974 | 625 | 54 | 76 | 565 | 40 | 123 | 580 | 80 | 56 |

C0E10 | 213 | 74 | 311 | 0.964 | 625 | 35 | 115 | 650 | 40 | 111 | |||

C5E0 | 181 | 53 | 317 | 0.946 | 625 | 53 | 80 | 557 | 40 | 129 | 582 | 80 | 58 |

C5E5 | 161 | 59 | 334 | 0.926 | 625 | 36 | 97 | 655 | 40 | 97 | 649 | 80 | 295 |

C10E0 | 137 | 43 | 312 | 0.961 | 625 | 31 | 134 | 660 | 40 | 99 | 636 | 80 | 295 |

C10E10 | 111 | 52 | 330 | 0.909 | 625 | 12 | 450 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hajihoseini, H.; Čada, M.; Hubička, Z.; Ünaldi, S.; Raadu, M.A.; Brenning, N.; Gudmundsson, J.T.; Lundin, D.
The Effect of Magnetic Field Strength and Geometry on the Deposition Rate and Ionized Flux Fraction in the HiPIMS Discharge. *Plasma* **2019**, *2*, 201-221.
https://doi.org/10.3390/plasma2020015

**AMA Style**

Hajihoseini H, Čada M, Hubička Z, Ünaldi S, Raadu MA, Brenning N, Gudmundsson JT, Lundin D.
The Effect of Magnetic Field Strength and Geometry on the Deposition Rate and Ionized Flux Fraction in the HiPIMS Discharge. *Plasma*. 2019; 2(2):201-221.
https://doi.org/10.3390/plasma2020015

**Chicago/Turabian Style**

Hajihoseini, Hamidreza, Martin Čada, Zdenek Hubička, Selen Ünaldi, Michael A. Raadu, Nils Brenning, Jon Tomas Gudmundsson, and Daniel Lundin.
2019. "The Effect of Magnetic Field Strength and Geometry on the Deposition Rate and Ionized Flux Fraction in the HiPIMS Discharge" *Plasma* 2, no. 2: 201-221.
https://doi.org/10.3390/plasma2020015