Cobalt Ferrite Nanoparticles: Highly Efficient Catalysts for the Biginelli Reaction
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Cobalt Ferrite Nanoparticles
2.3. Instrumentations
2.4. Catalytic Reaction Conditions
3. Results and Discussions
3.1. Materials Design
3.2. Materials Characterization Results
3.2.1. FTIR Analysis
3.2.2. XRD Analysis
3.2.3. TGA Analysis
3.2.4. The BET Surface Area
3.2.5. The XPS Spectra
3.2.6. SEM and EDX Analysis
3.2.7. TEM Images
3.3. Catalytic Activity Results
3.3.1. Application of CoFe2O4-NPs for Biginelli Reaction
3.3.2. Proposed Reaction Mechanism
3.3.3. Application of Fe2O3-NPs and CoO-NPs for Biginelli Reaction
3.3.4. Spectral Data of the Synthesized Compounds
6-Amino-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbonitrile (4a)
6-Amino-2-oxo-4-chlorophenyl-1,2,3,4-tetrahydropyrimidine-5-carbonitrile (4b)
2-Benzylidenemalononitrile (5a)
2-(4-Chlorobenzylidene)malononitrile (5b)
Comparison with Other Catalysts for the Biginelli Reaction in the Literature
4. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Chen, H.; Shi, C.; Shi, D.; Ji, S. Efficient One-Pot Synthesis of Spirooxindole Derivatives Catalyzed by l-Proline in Aqueous Medium. J. Comb. Chem. 2010, 12, 231–237. [Google Scholar] [CrossRef]
- Mamand, S.O.; Abdul, D.A.; Ayoob, M.M.; Hussein, A.J.; Samad, M.K.; Hawaiz, F.E. Traditional, one-pot three-component synthesis and anti-bacterial evaluations of some new pyrimidine derivatives. Inorg. Chem. Commun. 2024, 160, 111875. [Google Scholar] [CrossRef]
- Chen, S.; Ji, Y.S.; Choi, Y.; Youn, S.W. One-Pot Three-Component Reaction for the Synthesis of 3,4-Dihydroquinazolines and Quinazolin-4(3H)-ones. J. Org. Chem. 2024, 89, 6428–6443. [Google Scholar] [CrossRef]
- Kadam, P.R.; Bodke, Y.D.; Naik, M.D.; Nagaraja, O.; Manjunatha, B. One-pot three-component synthesis of thioether linked 4-hydroxycoumarin-benzothiazole derivatives under ambient condition and evaluation of their biological activity. Results Chem. 2022, 4, 100303. [Google Scholar] [CrossRef]
- Altammar, K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef] [PubMed]
- Gadipelly, C.; Mannepalli, L.K. Nano-metal oxides for organic transformations. Curr. Opin. Green Sustain. Chem. 2019, 15, 20–26. [Google Scholar] [CrossRef]
- Hammami, I.; Alabdallah, N.M.; Al Jomaa, A.; Kamoun, M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ.-Sci. 2021, 33, 101560. [Google Scholar] [CrossRef]
- Abbas, R.; Luo, J.; Qi, X.; Naz, A.; Khan, I.A.; Liu, H.; Yu, S.; Wei, J. Silver Nanoparticles: Synthesis, Structure, Properties and Applications. Nanomaterials 2024, 14, 1425. [Google Scholar] [CrossRef]
- Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.H.; Kim, J.H. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles. Nanomaterials 2019, 9, 1719. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Mahmoud, Z.H.; Abdullaev, S.; Ali, F.K.; Ali Naeem, Y.; Mzahim Mizher, R.; Morad Karim, M.; Abdulwahid, A.S.; Ahmadi, Z.; Habibzadeh, S.; et al. Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications. Case Stud. Chem. Environ. Eng. 2024, 9, 100626. [Google Scholar] [CrossRef]
- Yelmame, G.B.; Jagtap, S.B. Synthesis and characterization of 5% Ni-ZnO as robust nanocatalyst for Eco-Friendly synthesis of pyrimidines. Results Chem. 2022, 4, 100619. [Google Scholar] [CrossRef]
- Ghayour, F.; Shafiee, M.R.M.; Ghashang, M. ZnO-CeO2 nanocomposite: Efficient catalyst for the preparation of thieno[2,3-d]pyrimidin-4(3H)-one derivatives. Main Group Met. Chem. 2018, 41, 21–26. [Google Scholar] [CrossRef]
- Soni, J.; Sethiya, A.; Sahiba, N.; Gupta, S. Recent advancements in organic synthesis catalyzed by graphene oxide metal composites as heterogeneous nanocatalysts. Appl. Organomet. Chem. 2021, 35, e6162. [Google Scholar] [CrossRef]
- Harooni, N.S.; Naeimi, H.; Ghasemi, A.H. Synthesis of Pyrano[2,3-d]pyrimidine Derivatives Catalyzed by Trimetallic Multi-walled Carbon Nanotubes under Ultrasound Irradiation Conditions. ChemistrySelect 2023, 8, e202303311. [Google Scholar] [CrossRef]
- Mahdavi, M.; Ghasemzadeh, M.A.; Javadi, A. Synthesis of ZIF-8/ZnFe2O4/GO-OSO3H nanocomposite as a superior and reusable heterogeneous catalyst for the preparation of pyrimidine derivatives and investigation of their antimicrobial activities. Heliyon 2024, 10, e26339. [Google Scholar] [CrossRef] [PubMed]
- Maes, W.; Amabilino, D.B.; Dehaen, W. Synthesis of novel dendrimers containing pyrimidine units. Tetrahedron 2003, 59, 3937–3943. [Google Scholar] [CrossRef]
- Elumalai, K.; Shanmugam, A.; Devaraji, M.; Srinivasan, S. Synthesis and molecular docking of pyrimidine derivatives as antibacterial agents. Carbon Resour. Convers. 2024, 7, 100222. [Google Scholar] [CrossRef]
- Bhat, A.R.; Shalla, A.H.; Dongre, R.S. Dibutylamine (DBA): A highly efficient catalyst for the synthesis of pyrano[2,3-d]pyrimidine derivatives in aqueous media. J. Taibah Univ. Sci. 2016, 10, 9–18. [Google Scholar] [CrossRef]
- Kopperundevi, J.; Ashokkumar, D.; Gopalakrishnan, M.; Ramalingam, G. Green Synthesis of Bimetallic Cu−Cd Nanoparticles and its Catalytic Activity in Pyrido [2,3-d;6,5-d] Dipyrimidine Derivatives. ChemistrySelect 2024, 9, e202402243. [Google Scholar] [CrossRef]
- Parthasarathy, M.; Mohan, N. In: Iron Oxide Nanoparticles … CATALYTIC APPLICATIONS OF IRON OXIDE NANOPARTICLES Complimentary Contributor Copy. 2022. Available online: https://www.researchgate.net/publication/362961362_In_Iron_Oxide_Nanoparticles_CATALYTIC_APPLICATIONS_OF_IRON_OXIDE_NANOPARTICLES_Complimentary_Contributor_Copy (accessed on 29 July 2025).
- Chaudhari, D.S.; Upadhyay, R.P.; Shinde, G.Y.; Gawande, M.B.; Filip, J.; Varma, R.S.; Zbořil, R. A review on sustainable iron oxide nanoparticles: Syntheses and applications in organic catalysis and environmental remediation. Green Chem. 2024, 26, 7579–7655. [Google Scholar] [CrossRef]
- Campos, E.; Pinto, D.; Oliveira, J.; Mattos, E.; Lazzarini Dutra, R. Synthesis, Characterization and Applications of Iron Oxide Nanoparticles—A Short Review. J. Aerosp. Technol. Manag. 2015, 7, 267–276. [Google Scholar] [CrossRef]
- Li, K.; Haneda, M.; Gu, Z.; Wang, H.; Ozawa, M. Modification of CeO2 on the redox property of Fe2O3. Mater. Lett. 2013, 93, 129–132. [Google Scholar] [CrossRef]
- Nava, M.R.; Pereira, C.A.A.; Brackmann, R.; Lenzi, G.G.; Dias, D.T.; de Souza, É.C.F.; Borges, J.F.M.; da Cunha, J.B.M.; Barreto-Rodrigues, M. CeO2-Fe2O3 mixed oxides: Synthesis, characterization and evaluation in the photocatalytic degradation of nitroaromatic compounds from wastewater of the explosives industry. J. Photochem. Photobiol. A Chem. 2022, 428, 113839. [Google Scholar] [CrossRef]
- Chai, H.; Yang, C.; Xu, P.; Wang, P.; Qu, J.; Zhang, G. Enhanced visible-light photocatalytic activity with Fe2O3–ZnO@C/g-C3N4 heterojunction: Characterization, kinetics, and mechanisms. J. Clean. Prod. 2022, 377, 134511. [Google Scholar] [CrossRef]
- Teng, W.; Li, J.; Dai, X.; Chen, Y.; Wu, H.; Liu, W.; Ren, S.; Yang, J.; Liu, Q. Promoting the NH3-SCR performance of Fe2O3-TiO2 catalyst through regulation of the exposed crystal facets of Fe2O3. Appl. Surf. Sci. 2024, 647, 158938. [Google Scholar] [CrossRef]
- Liu, W.; Dennis, J.; Scott, S. The Effect of Addition of ZrO2 to Fe2O3 for Hydrogen Production by Chemical Looping. Ind. Eng. Chem. Res. 2012, 51, 16597–16609. [Google Scholar] [CrossRef]
- Apblett, A.W.; Georgieva, G.D.; Mague, J.T. Synthesis and Spectroscopic and Thermal Decomposition Studies of Alkali Metal Salts of 2-Oximidopropionate. Inorg. Chem. 1997, 36, 2656–2661. [Google Scholar] [CrossRef]
- Apblett, A.W.; Georgieva, G.D. Low-Temperature Precursors for Titanium Oxide. Phosphorus Sulfur Silicon Relat. Elem. 1994, 93, 479–480. [Google Scholar] [CrossRef]
- Apblett, A.; Georgieva, G.; Mague, J. Incorporation of Radionuclides into Mineral Phases via a Thermally Unstable Complexant Ligand. MRS Proc. 2011, 294, 123. [Google Scholar] [CrossRef]
- Bagabas, A.A.; Apblett, A.W.; Shemsi, A.M.; Seddigi, Z.S. Synthesis, X-ray crystal structure, spectroscopic characterization, and thermal chemistry of trans-diaqua-bis-(2-hydroxyiminopropionato-N,O) zinc(II), trans-{(H2O)2[H3CC(=NOH)COO)]2Zn}–A precursor for nano-crystalline zincite. Main Group Chem. 2008, 7, 65–81. [Google Scholar] [CrossRef]
- Alamier, W.M.; Ibrahim, D.A.; Alaghaz, A.-N.M.A.; Apblett, A.W. Characterization, crystal structure, and quantum chemical parameters of diaqua bis-(2-hydroxyiminopropanoato) iron (II): A comparative study. J. Mol. Struct. 2023, 1292, 136046. [Google Scholar] [CrossRef]
- Abu Noqta, O.; Aziz, A.A.; Usman, I.A.; Bououdina, M. Recent Advances in Iron Oxide Nanoparticles (IONPs): Synthesis and Surface Modification for Biomedical Applications. J. Supercond. Nov. Magn. 2019, 32, 779–795. [Google Scholar] [CrossRef]
- Santos, S.V.; Costa, C.S.; Paraguassu, W.; Silva, C.W.C.; Otubo, L.; Souza, K.S.; Correa, B.S.; Miranda-Filho, A.A.; Ferreira, W.L.; Carbonari, A.W.; et al. Synthesis and Local Characterization of CoO Nanoparticles in Distinct Phases: Unveiling Polymorphic Structures. ACS Omega 2024, 9, 42883–42894. [Google Scholar] [CrossRef]
- Siva, D.; Paramasivam, S.; Sakthivel, R.; Muthu, E.; Kim, I.; Navaneethan, R.; Arumugam, S.; Oh, T. Impact of Zn doping on the dielectric and magnetic properties of CoFe2O4 nanoparticles. Ceram. Int. 2022, 48, 33208–33218. [Google Scholar]
- Avcı, Ö.N.; Sementa, L.; Fortunelli, A. Mechanisms of the Oxygen Evolution Reaction on NiFe2O4 and CoFe2O4 Inverse-Spinel Oxides. ACS Catal. 2022, 12, 9058–9073. [Google Scholar] [CrossRef]
- Fitriyanti, E.; Utari; Purnama, B. Comparison XRD pattern of CoFe2O4 thin films and nanoparticles. J. Phys. Conf. Ser. 2017, 909, 012010. [Google Scholar] [CrossRef]
- Scarano, D.; Zecchina, A.; Spoto, G.; Geobaldo, F. CoO–ZnO solid solution as a model to investigate the CO–cation interaction: An FTIR and HRTEM study. J. Chem. Soc. Faraday Trans. 1995, 91, 4445–4450. [Google Scholar] [CrossRef]
- Qayoom, M.; Shah, K.; Pandit, A.; Firdous, A.; Dar, G. Dielectric and electrical studies on iron oxide (α-Fe2O3) nanoparticles synthesized by modified solution combustion reaction for microwave applications. J. Electroceram. 2020, 45, 7–14. [Google Scholar] [CrossRef]
- Deori, D.K.; Deka, S. Morphology oriented surfactant dependent CoO and reaction time dependent Co3O4 nanocrystals from single synthesis method and their optical and magnetic properties. CrystEngComm 2013, 15, 8465–8474. [Google Scholar] [CrossRef]
- Jain, R.; Kumar, S.; Kumar Meena, S. Precipitating agent (NaOH and NH4OH) dependent magnetic properties of cobalt ferrite nanoparticles. AIP Adv. 2022, 12, 095109. [Google Scholar] [CrossRef]
- Thimmiah, B.R.; Nallathambi, G. Synthesis of α-Fe2O3 nanoparticles and analyzing the effect of annealing temperature on its properties. Mater. Sci. -Pol. 2020, 38, 116–121. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, J.; Wang, S.; Guo, X.; Zhang, J.; Xia, H.; Zhang, S.; Wu, S. Facile Synthesis of Porous α-Fe2O3 Nanorods and Their Application in Ethanol Sensors. J. Phys. Chem. C 2008, 112, 17804–17808. [Google Scholar] [CrossRef]
- Alothman, Z. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef]
- Paparazzo, E. On the quantitative XPS analysis of Fe2O3 and Fe1−xO oxides. J. Electron Spectrosc. Relat. Phenom. 2006, 154, 38–40. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Biesinger, M.; Payne, B.; Grosvenor, A.; Lau, L.; Gerson, A.; Smart, R. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Jena, A.; Penki, T.; Nookala, M.; Shivashankar, S. Flower-like porous cobalt(II) monoxide nanostructures as anode material for Li-ion batteries. J. Electroanal. Chem. 2015, 761, 21–27. [Google Scholar] [CrossRef]
- Yuan, R.; Wen, H.; Zeng, L.; Li, X.; Liu, X.; Zhang, C. Supercritical CO2 Assisted Solvothermal Preparation of CoO/Graphene Nanocomposites for High Performance Lithium-Ion Batteries. Nanomaterials 2021, 11, 694. [Google Scholar] [CrossRef]
- Azreen, N.; Rahman, A.; Mustaffa, N.; Diyana, N.; Aziz, A.; Badar, N.; Kamarulzaman, N.; Alam, S.; Malaysia, S. Synthesis and Characterization of Fe2O3 Prepared Via Sol-Gel Method. Adv. Mater. Res. 2012, 545, 410–413. [Google Scholar] [CrossRef]
- Li, L.; Chu, Y.; Liu, Y.; Song, J.; Wang, D.; Du, X. A facile hydrothermal route to synthesize novel Co3O4 nanoplates. Mater. Lett. 2008, 62, 1507–1510. [Google Scholar] [CrossRef]
- Ahsan, W. Chapter 2-Synthetic strategies of dihydropyrimidinones. In Dihydropyrimidinones as Potent Anticancer Agents; Ahmad Bhat, M., Rehman, M.U., Verma, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 17–38. [Google Scholar]
- Ramos, L.M.; Ponce de Leon y Tobio, A.Y.; dos Santos, M.R.; de Oliveira, H.C.B.; Gomes, A.F.; Gozzo, F.C.; de Oliveira, A.L.; Neto, B.A.D. Mechanistic Studies on Lewis Acid Catalyzed Biginelli Reactions in Ionic Liquids: Evidence for the Reactive Intermediates and the Role of the Reagents. J. Org. Chem. 2012, 77, 10184–10193. [Google Scholar] [CrossRef]
- Corma, A.; García, H. Lewis acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev. 2003, 103, 4307–4365. [Google Scholar] [CrossRef]
- Sheldon, R. Introduction to Green Chemistry, Organic Synthesis and Pharmaceuticals. In Green Chemistry in the Pharmaceutical Industry; Wiley: Hoboken, NJ, USA, 2010; pp. 1–20. [Google Scholar]
- Ratheesh, A.; Namitha, S.; Sreelekshmy, O.K.; Ancy, P.V.; Bijimol, B.I.; Prasad, J.P.; Shibli, S.M.A. Tailored synthesis of CoFe2O4 nanorods to prevent clogging in the microstructured biochar-supported MFC anode for sustained performance. J. Environ. Chem. Eng. 2024, 12, 113581. [Google Scholar] [CrossRef]
- Sanchez-Lievanos, K.R.; Sun, T.; Gendrich, E.A.; Knowles, K.E. Surface Adsorption and Photoinduced Degradation: A Study of Spinel Ferrite Nanomaterials for Removal of a Model Organic Pollutant from Water. Chem. Mater. 2024, 36, 3981–3998. [Google Scholar] [CrossRef]
- Valiey, E.; Dekamin, M.G.; Alirezvani, Z. Sulfamic acid pyromellitic diamide-functionalized MCM-41 as a multifunctional hybrid catalyst for melting-assisted solvent-free synthesis of bioactive 3,4-dihydropyrimidin-2-(1H)-ones. Sci. Rep. 2021, 11, 11199. [Google Scholar] [CrossRef]
- Pharma, D.; Ramineni, S.; Kannasani, R.; Nageswara, C.; Nageswara Rao, K. Synthesis of 3,4-dihydropyrimidin-2(1H)-ones using camphor sulfonic acid as a catalyst under solvent-free conditions. Pharma Chem. 2016, 8, 375–379. [Google Scholar]
- Aute, D.; Kshirsagar, A.; Uphade, B.; Gadhave, A. An expedient and straightforward solvent-free synthesis of 1,8-dioxo-octahydroxanthenes using eco-friendly aluminized polyborate catalyst. J. Heterocycl. Chem. 2020, 57, 3691–3702. [Google Scholar] [CrossRef]
- Elhamifar, D.; Shábani, A. Manganese-Containing Periodic Mesoporous Organosilica with Ionic-Liquid Framework (Mn@PMO-IL): A Powerful, Durable, and Reusable Nanocatalyst for the Biginelli Reaction. Chem.-A Eur. J. 2014, 20, 3212–3217. [Google Scholar] [CrossRef]
- Pramanik, M.; Bhaumik, A. Phosphonic Acid Functionalized Ordered Mesoporous Material: A New and Ecofriendly Catalyst for One-Pot Multicomponent Biginelli Reaction under Solvent-Free Conditions. ACS Appl. Mater. Interfaces 2014, 6, 933–941. [Google Scholar] [CrossRef]
- Procopio, A.; Costanzo, P.; Curini, M.; Nardi, M.; Oliverio, M.; Sindona, G. Erbium(III) Chloride in Ethyl Lactate as a Smart Ecofriendly System for Efficient and Rapid Stereoselective Synthesis of trans-4,5-Diaminocyclopent-2-enones. ACS Sustain. Chem. Eng. 2013, 1, 541–544. [Google Scholar] [CrossRef]
- Safari, J.; Gandomi-Ravandi, S.; Ashiri, S. Organosilane sulfonated graphene oxide in the Biginelli and Biginelli-like reactions. New J. Chem. 2016, 40, 512–520. [Google Scholar] [CrossRef]
Fe2O3-Nps | CoO-Nps | CoFe2O4-Nps | |
---|---|---|---|
Surface area (m2/g) | 50.3209 | 36.0411 | 46.2293 |
Pore Volume (cm3/g) | 0.180518 | 0.183855 | 0.280811 |
Pore radius (nm) | 1.92782 | 1.93109 | 1.9242 |
Materials | Element | Weight % | Atomic % | Net Int. | Error % |
---|---|---|---|---|---|
Fe2O3-Nps | O K | 26.71 | 55.99 | 45.75 | 9.06 |
FeK | 73.29 | 44.01 | 87.39 | 4.24 | |
CoO-Nps | O K | 59.55 | 84.43 | 83.23 | 7.23 |
CoK | 40.45 | 15.57 | 119.1 | 3.34 | |
CoFe2O4-Nps | O K | 64.75 | 86.83 | 77.51 | 6.92 |
FeK | 16.68 | 6.41 | 44.96 | 6.02 | |
CoK | 18.56 | 6.76 | 43.54 | 6.27 |
Entry a | CoFe2O4-Nps Nanocatalyst | ||
---|---|---|---|
Catalyst Dose (mg) | Time (min) | Yield (%) b | |
1 | 0 | 60 | 0 |
2 | 5 | 60 | trace |
3 | 10 | 50 | 40 |
4 | 15 | 40 | 70 |
5 | 20 | 30 | 90 |
6 | 25 | 30 | 95–96 |
7 | 30 | 30 | 95–96 |
Catalyst | Temperature (°C) | Time (min) | Yield (%) | Reference |
---|---|---|---|---|
CoFe2O4-NPs | 25 | 30 | 95–96 | This work |
Fe2O3-NPs | 25 | 60 | 0 | This work |
CoO-NPs | 25 | 60 | 0 | This work |
Cu@PMO-IL | 70 | 50 | 96 | [58] |
Nano-g-Fe2O3-SO3H | 60 | 180 | 91 | [59] |
SiO2-BaCl2/SF | 85 | 45 | 93 | [60] |
Mn@PMO-IL | 70 | 45 | 95 | [61] |
SiO2-H2PO3 | 60 | 150 | 92 | [62] |
ErCl3 | 120 | 30 | 92 | [63] |
SSi-GO | 80 | 20 | 94 | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamier, W.M.; El-Telbani, E.M.; Syed, I.S.; Bakry, A.M. Cobalt Ferrite Nanoparticles: Highly Efficient Catalysts for the Biginelli Reaction. Ceramics 2025, 8, 102. https://doi.org/10.3390/ceramics8030102
Alamier WM, El-Telbani EM, Syed IS, Bakry AM. Cobalt Ferrite Nanoparticles: Highly Efficient Catalysts for the Biginelli Reaction. Ceramics. 2025; 8(3):102. https://doi.org/10.3390/ceramics8030102
Chicago/Turabian StyleAlamier, Waleed M., Emad M. El-Telbani, Imam Saheb Syed, and Ayyob M. Bakry. 2025. "Cobalt Ferrite Nanoparticles: Highly Efficient Catalysts for the Biginelli Reaction" Ceramics 8, no. 3: 102. https://doi.org/10.3390/ceramics8030102
APA StyleAlamier, W. M., El-Telbani, E. M., Syed, I. S., & Bakry, A. M. (2025). Cobalt Ferrite Nanoparticles: Highly Efficient Catalysts for the Biginelli Reaction. Ceramics, 8(3), 102. https://doi.org/10.3390/ceramics8030102