Effect of Thickness on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahn, Y.; Son, J.Y. Mixed grains and orientation-dependent piezoelectricity of polycrystalline Nd-substituted Bi4Ti3O12 thin films. Ceram. Int. 2016, 42, 13061–13064. [Google Scholar] [CrossRef]
- Roy, S.; Majumder, S. Recent advances in multiferroic thin films and composites. J. Alloy Compd. 2012, 538, 153–159. [Google Scholar] [CrossRef]
- Scott, J.F.; de Araujo, C.A.P. Ferroelectric Memories. Science 1989, 246, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Ouyang, J.; Zhang, Y.-X.; Ascienzo, D.; Li, Y.; Zhao, Y.-Y.; Ren, Y. Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat. Commun. 2017, 8, 1999. [Google Scholar] [CrossRef] [PubMed]
- Grinberg, I.; West, D.V.; Torres, M.; Gou, G.; Stein, D.M.; Wu, L.; Chen, G.; Gallo, E.M.; Akbashev, A.R.; Davies, P.K.; et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.-G.; Zheng, D.-Y.; Cheng, C.; Zhang, J.; Zhang, H. Effect of rare-earth addition on morphotropic phase boundary and relaxation behavior of the PNN-PZT ceramics. J. Alloy Compd. 2017, 693, 1250–1256. [Google Scholar] [CrossRef]
- Kumari, S.; Ortega, N.; Pradhan, D.K.; Kumar, A.; Scott, J.F.; Katiyar, R.S. Effect of thickness on dielectric, ferroelectric, and optical properties of Ni substituted Pb(Zr0.2Ti0.8)O3 thin films. J. Appl. Phys. 2015, 118, 184103. [Google Scholar] [CrossRef]
- Cho, S.W.; Lee, J.I.; Jeong, Y.H. Microstructure, ferroelectric and piezoelectric properties of Bi4Ti3O12 platelet incorporated 0.36BiScO3-0.64PbTiO3 thick films for high temperature piezoelectric device applications. Ceram. Int. 2021, 47, 23880–23887. [Google Scholar] [CrossRef]
- Du, X.; Huang, W.; He, S.; Kumar, T.S.; Hao, A.; Qin, N.; Bao, D. Dielectric, ferroelectric, and photoluminescent properties of Sm-doped Bi4Ti3O12 thin films synthesized by sol-gel method. Ceram. Int. 2018, 44, 19402–19407. [Google Scholar] [CrossRef]
- Ma, S.; Cheng, X.; Ma, Z.; Ali, T.; Xu, Z.; Chu, R. Effect of thickness and crystalline morphology on electrical properties of rf-magnetron sputtering deposited Bi4Ti3O12 thin films. Ceram. Int. 2018, 44, 20465–20471. [Google Scholar] [CrossRef]
- Park, B.H.; Kang, B.S.; Bu, S.D.; Noh, T.W.; Lee, J.; Jo, W. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 1999, 401, 682–684. [Google Scholar] [CrossRef]
- Subbarao, E. A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 1962, 23, 665–676. [Google Scholar] [CrossRef]
- Long, C.; Chang, Q.; Fan, H. Differences in nature of electrical conductions among Bi4Ti3O12-based ferroelectric polycrystalline ceramics. Sci. Rep. 2017, 7, 4193. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xie, S.; Wang, H.; Chen, Q.; Wang, Q.; Zhu, J.; Guan, Z. Dielectric abnormality and ferroelectric asymmetry in W/Cr co-doped Bi4Ti3O12 ceramics based on the effect of defect dipoles. J. Alloy Compd. 2017, 696, 746–753. [Google Scholar] [CrossRef]
- Roselin, A.A.; Karkuzhali, R.; Anandhan, N.; Gopu, G. Bismuth titanate (Bi4Ti3O12, BTO) sol–gel spin coated thin film for heavy metal ion detection. J. Mater. Sci. Mater. Electron. 2021, 32, 24801–24811. [Google Scholar] [CrossRef]
- Du, X.; Huang, W.; Thatikonda, S.K.; Qin, N.; Bao, D. Improved ferroelectric and dielectric properties of Sm, La co-doped Bi4Ti3O12 multifunctional thin films with orange-red emission. J. Mater. Sci. Mater. Electron. 2019, 30, 13158–13166. [Google Scholar] [CrossRef]
- Zhang, S.-T.; Chen, Z.; Zhang, C.; Yuan, G.-L. Temperature-dependent ferroelectric and dielectric properties of Bi3.25La0.75Ti3O12 thin films. Appl. Surf. Sci. 2010, 256, 2468–2473. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.-B.; Zheng, X.-J. Nanoscale domain switching mechanism of Bi3.15Eu0.85Ti3O12 thin film under the different mechanical forces. Chin. Phys. B 2015, 24, 107702. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, G.; Qin, N.; Bao, D. Dual enhancement of photoluminescence and ferroelectric polarization in Pr3+/La3+-codoped bismuth titanate thin films. J. Am. Ceram. Soc. 2010, 93, 2109–2112. [Google Scholar] [CrossRef]
- Wu, D.; Li, A.; Ming, N. Leakage current characteristics of Pt/Bi3.25La0.75Ti3O12/Pt thin-film capacitors. J. Appl. Phys. 2005, 97, 1915533. [Google Scholar] [CrossRef]
- Kao, M.-C.; Chen, H.-Z.; Young, S.-L. The microstructure and ferroelectric properties of Sm and Ta-doped bismuth titanate ferroelectric thin films. Thin Solid Films 2013, 529, 143–146. [Google Scholar] [CrossRef]
- Su, L.; Lu, X.; Chen, L.; Wang, Y.; Yuan, G.; Liu, J.-M. Flexible, Fatigue-Free, and Large-Scale Bi3.25La0.75Ti3O12 Ferroelectric Memories. ACS Appl. Mater. Interfaces 2018, 10, 21428–21433. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Cheng, X.; Ma, Z.; Xu, Z.; Chu, R. Characterization of highly (117)-oriented Bi3.25La0.75Ti3O12 thin films prepared by rf-magnetron sputtering technique. Solid State Commun. 2018, 278, 31–35. [Google Scholar] [CrossRef]
- Xue, K.-H.; de Araujo, C.A.P.; Celinska, J. A comparative study on Bi4Ti3O12 and Bi3.25La0.75Ti3O12 ferroelectric thin films derived by metal organic decomposition. J. Appl. Phys. 2010, 107, 3428968. [Google Scholar] [CrossRef]
- Wu, A.; Soares, M.R.; Salvado, I.M.M.; Vilarinho, P.M. Sol–gel synthesis and electrical characterization of Bi3.25La0.75Ti3O12 thin films. Mater. Res. Bull. 2012, 47, 3819–3824. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, W.; Wang, Y.; Sun, H.; Li, F.; Yan, Z.; Du, J.; Zhao, Q. Impact of Pt bottom electrode on the properties of ferroelectric Bi3.25La0.75Ti3O12 capacitors. Mater. Lett. 2007, 61, 1933–1936. [Google Scholar] [CrossRef]
- Sun, S.; Yuan, J.; Guo, W.; Duan, X.; Jia, D.; Lin, H. Thickness effects on the sinterability, microstructure, and nanohardness of SiC-based ceramics consolidated by spark plasma sintering. J. Am. Ceram. Soc. 2023, 107, 777–784. [Google Scholar] [CrossRef]
- Zhang, W.L.; Tang, M.H.; Xiong, Y.; Wang, K.; Wang, Z.P.; Xiao, Y.G.; Yan, S.A.; Li, Z.; He, J. Influence of the annealing temperature of the Bi4Ti3O12 seeding layer on the structural and electrical properties of Bi3.15Nd0.85Ti2.99Mn0.01O12 thin films. RSC Adv. 2016, 6, 88668–88673. [Google Scholar] [CrossRef]
- Yang, B.B.; Guo, M.Y.; Song, D.P.; Tang, X.W.; Wei, R.H.; Hu, L.; Yang, J.; Song, W.H.; Dai, J.M.; Lou, X.J.; et al. Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications. Appl. Phys. Lett. 2017, 111, 183903. [Google Scholar] [CrossRef]
- Schwartz, R.W.; Voigt, J.A.; Tuttle, B.A.; Payne, D.A.; Reichert, T.L.; DaSalla, R.S. Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived lead zirconate titanate thin films. J. Mater. Res. 1997, 12, 444–456. [Google Scholar] [CrossRef]
- Iljinas, A.; Stankus, V. Influence of deposition temperature on structural and ferroelectric properties of Bi4Ti3O12 thin films. Appl. Surf. Sci. 2016, 381, 2–5. [Google Scholar] [CrossRef]
- Fan, Q.; Liu, M.; Ma, C.; Wang, L.; Ren, S.; Lu, L.; Lou, X.; Jia, C.-L. Significantly enhanced energy storage density with superior thermal stability by optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure. Nano Energy 2018, 51, 539–545. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, Y.; Kang, L.; Yuan, M.; Yang, Q.; Cheng, H.; Pan, W.; Ouyang, J. Space-charge dominated epitaxial BaTiO3 heterostructures. Acta Mater. 2015, 85, 207–215. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Jiang, Y.-P.; Tang, X.-G.; Liu, Q.-X.; Li, W.-H.; Tang, Z.-H. Excellent Bipolar Resistive Switching Characteristics of Bi4Ti3O12 Thin Films Prepared via Sol-Gel Process. Nanomaterials 2021, 11, 2705. [Google Scholar] [CrossRef]
- Bu, Y.; Xu, T.; Geng, S.; Fan, S.; Li, Q.; Su, J. Ferroelectrics-Electret Synergetic Organic Artificial Synapses with Single-Polarity Driven Dynamic Reconfigurable Modulation. Adv. Funct. Mater. 2023, 33, 2213741. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, W.; Cai, Y.; Guo, Q.; Wang, D.; Jia, T. Effect of Thickness on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films. Ceramics 2024, 7, 29-38. https://doi.org/10.3390/ceramics7010003
Yue W, Cai Y, Guo Q, Wang D, Jia T. Effect of Thickness on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films. Ceramics. 2024; 7(1):29-38. https://doi.org/10.3390/ceramics7010003
Chicago/Turabian StyleYue, Wenfeng, Yali Cai, Quansheng Guo, Dawei Wang, and Tingting Jia. 2024. "Effect of Thickness on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films" Ceramics 7, no. 1: 29-38. https://doi.org/10.3390/ceramics7010003
APA StyleYue, W., Cai, Y., Guo, Q., Wang, D., & Jia, T. (2024). Effect of Thickness on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films. Ceramics, 7(1), 29-38. https://doi.org/10.3390/ceramics7010003