Reducing the Degradation of CsFAMA Perovskite Solar Cells
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CsFAMA | Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 |
| DLS | Dynamic light scattering |
| HCOOH | Formic acid |
| ISOS-D | International Summit on Organic PV stability–dark-storage/shelf-life |
| PSC | Perovskite solar cells |
| PVP | Polyvinylpyrrolidone |
References
- Yue, L.; Yan, B.; Attridge, M.; Wang, Z. Light absorption in perovskite solar cell: Fundamentals and plasmonic enhancement of infrared band absorption. Sol. Energy 2016, 124, 143–152. [Google Scholar] [CrossRef]
- Min, J.; Choi, Y.; Kim, D.; Park, T. Beyond Imperfections: Exploring Defects for Breakthroughs in Perovskite Solar Cell Research. Adv. Energy Mater. 2024, 14, 2302659. [Google Scholar] [CrossRef]
- Chen, B.; Baek, S.; Hou, Y.; Aydin, E.; Bastiani, M.; Scheffel, B.; Proppe, A.; Huang, Z.; Wei, M.; Wang, Y.; et al. Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. Nat. Commun. 2020, 11, 1257. [Google Scholar] [CrossRef] [PubMed]
- Albero, J.; Asiri, A.M.; García, H. Influence of the composition of hybrid perovskites on their performance in solar cells. J. Mater. Chem. A 2016, 4, 4353–4364. [Google Scholar] [CrossRef]
- Dong, H.; Ran, C.; Gao, W.; Li, M.; Xia, Y.; Huang, W. Metal Halide Perovskite for next-generation optoelectronics: Progresses and prospects. eLight 2023, 3, 3. [Google Scholar] [CrossRef]
- Best Research-Cell Efficiency Chart [Electronic resource]. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 14 October 2025).
- Suresh, N.; Chandra, K. A review on perovskite solar cells (PSCs), materials and applications. J. Mater. 2021, 7, 940–956. [Google Scholar] [CrossRef]
- Xiao, J.-W.; Liu, L.; Zhang, D.; Marco, N.; Lee, J.-W.; Lin, O.; Chen, Q.; Yang, Y. The Emergence of the Mixed Perovskites and Their Applications as Solar Cells. Adv. Energy Mater. 2017, 7, 1700491. [Google Scholar] [CrossRef]
- Cao, F.; Bian, L.; Li, L. Perovskite solar cells with high-efficiency exceeding 25%: A review. Energy Mater. Devices 2024, 2, 9370018. [Google Scholar] [CrossRef]
- Liu, L.; Lu, J.; Wang, H.; Cui, Z.; Giorgi, G.; Bai, Y.; Chen, Q. A-site phase segregation in mixed cation perovskite. Mater. Rep. Energy 2021, 1, 100064. [Google Scholar] [CrossRef]
- Shao, Y.; Fang, Y.; Li, T.; Wang, Q.; Dong, Q.; Deng, Y.; Yuan, Y.; Wei, H.; Wang, M.; Gruverman, A.; et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 2016, 9, 1752–1759. [Google Scholar] [CrossRef]
- Luévano-Hipólito, E.; Quintero-Lizárraga, O.L.; Torres-Martínez, L.M. CO2 photoreduction using encapsulated potassium bismuth iodide (K3Bi2I9) perovskite in porous supports. Ceram. Int. 2024, 50, 50876–50883. [Google Scholar] [CrossRef]
- Cepeda-Aguirre, A.A.; Kharisov, B.I.; Torres-Martínez, L.M.; Luévano-Hipólito, E. Synthesis of mixed bismuth halide perovskites M3Bi2I6Br3 (M = Cs, K) encapsulated in floating substrates with high efficiencies for visible-light-driven CO2 and H2O conversion. Sol. Energy 2025, 288, 113296. [Google Scholar] [CrossRef]
- Yan, K.; Long, M.; Zhang, T.; Wei, Z.; Chen, H.; Yang, S.; Xu, J. Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiency. Am. Chem. Soc. 2015, 137, 4460–4468. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.K.; Moore, D.T.; Wenger, B.; Nayak, S.; Haghighirad, A.A.; Fineberg, A.; Noel, N.K.; Reid, O.G.; Rumbles, G.; Kukura, P.; et al. Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nat. Commun. 2016, 7, 13303. [Google Scholar] [CrossRef]
- Duan, B.; Ren, Y.; Xu, Y.; Chen, W.; Ye, Q.; Huang, Y.; Zhu, J.; Dai, S. Identification and characterization of a new intermediate to obtain high quality perovskite films with hydrogen halides as additives. Inorg. Chem. Front. 2017, 4, 473–480. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhu, X.; Yang, Z.; Ke, W.; Feng, J.; Ren, X.; Zhao, K.; Liu, M.; Kanatzidis, M.G.; et al. Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Sci. Adv. 2021, 7, eabc8844. [Google Scholar] [CrossRef]
- Noel, N.K.; Congiu, M.; Ramadan, A.J.; Fearn, S.; McMeekin, D.P.; Patel, J.B.; Johnston, M.B.; Wenger, B.; Snaith, H.J. Unveiling the Influence of pH on the Crystallization of Hybrid Perovskites, Delivering Low Voltage Loss Photovoltaics. Joule 2017, 1, 328–343. [Google Scholar] [CrossRef]
- Meng, L.; Wei, Q.; Yang, Z.; Yang, D.; Feng, J.; Ren, X.; Liu, Y.; Liu, S. Improved perovskite solar cell efficiency by tuning the colloidal size and free ion concentration in precursor solution using formic acid additive. J. Energy Chem. 2020, 41, 43–51. [Google Scholar] [CrossRef]
- Hernández-Granados, A.; Corpus-Mendoza, A.N.; Moreno-Romero, P.M.; Rodríguez-Castañeda, C.A.; Pascoe-Sussoni, J.E.; Castelo-González, O.A.; Menchaca-Campos, E.C.; Escorcia-García, J.; Hu, H. Optically uniform thin films of mesoporous TiO2 for perovskite solar cell applications. Opt. Mater. 2019, 88, 695–703. [Google Scholar] [CrossRef]
- Khenkin, M.V.; Katz, E.A.; Abate, A.; Bardizza, G.; Berry, J.J.; Brabec, C.; Brunetti, F.; Bulović, V.; Burlingame, Q.; Carlo, A.D.; et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 2020, 5, 35–49. [Google Scholar] [CrossRef]
- Dehghanipour, M.; Behjat, A.; Shabani, A.M.H.; Haddad, M.A. Toward Desirable 2D/3D Hybrid Perovskite Films for Solar Cell Application with Additive Engineering Approach. J. Mater. Sci. Mater. Electron. 2022, 33, 12953–12964. [Google Scholar] [CrossRef]
- de Araujo, F.L.; Stefanelli, M.; Agresti, A.; Pescetelli, S.; Di Vito, A.; Der Maur, M.A.; Vesce, L.; Nogueira, A.F.; Di Carlo, A. Empowering Perovskite Modules for Solar and Indoor Lighting Applications by 1,8-Diiodooctane/Phenethylammonium Iodide 2D Perovskite Passivation Strategy. Nano Energy 2025, 142, 111279. [Google Scholar] [CrossRef]
- Singh, S.; Usulor, C.E.; Khampa, W.; Musikpan, W.; Passatorntaschakorn, W.; Tipparak, P.; Seriwattanachai, C.; Nakajima, H.; Ngamjarurojana, A.; Gardchareon, A.; et al. Facile Ethylvanillin Passivation for High-Performance CsFA Perovskite Solar Cells in Variable Lighting Environments. ACS Appl. Electron. Mater. 2025, 7, 7616–7630. [Google Scholar] [CrossRef]





| Sample Batch Number | Volume of HCOOH, µL/mL Solution | Pmin, a.u. | Pmax, a.u. | Pav, a.u. | Maximum Deviation from Pav, % |
|---|---|---|---|---|---|
| 1 | 0 | 38,734 | 42,587 | 40,567 | 4.98 |
| 2 | 10 | 45,918 | 49,229 | 47,653 | 3.64 |
| 3 | 20 | 50,129 | 52,978 | 51,475 | 2.92 |
| 4 | 30 | 44,896 | 48,182 | 46,548 | 3.55 |
| 5 | 50 | 41,952 | 45,898 | 43,825 | 4.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degterev, A.; Tarasov, A.; Degtereva, M.; Pavlova, M.; Khorshev, N.; Levin, Y.; Mikhailov, I.; Testov, D.; Lamkin, I.; Tarasov, S. Reducing the Degradation of CsFAMA Perovskite Solar Cells. Colloids Interfaces 2025, 9, 88. https://doi.org/10.3390/colloids9060088
Degterev A, Tarasov A, Degtereva M, Pavlova M, Khorshev N, Levin Y, Mikhailov I, Testov D, Lamkin I, Tarasov S. Reducing the Degradation of CsFAMA Perovskite Solar Cells. Colloids and Interfaces. 2025; 9(6):88. https://doi.org/10.3390/colloids9060088
Chicago/Turabian StyleDegterev, Aleksandr, Aleksandr Tarasov, Mariya Degtereva, Marina Pavlova, Nikita Khorshev, Yevgeniy Levin, Ivan Mikhailov, Dmitriy Testov, Ivan Lamkin, and Sergey Tarasov. 2025. "Reducing the Degradation of CsFAMA Perovskite Solar Cells" Colloids and Interfaces 9, no. 6: 88. https://doi.org/10.3390/colloids9060088
APA StyleDegterev, A., Tarasov, A., Degtereva, M., Pavlova, M., Khorshev, N., Levin, Y., Mikhailov, I., Testov, D., Lamkin, I., & Tarasov, S. (2025). Reducing the Degradation of CsFAMA Perovskite Solar Cells. Colloids and Interfaces, 9(6), 88. https://doi.org/10.3390/colloids9060088

