Systematic Study of Counterion Effects and NaCl-Induced Modulation of Foam Performance in Lauroyl Glutamate Surfactants
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of the Aqueous Solutions
2.2.2. Surface Tension Measurements
2.2.3. Foam Measurements
3. Results and Discussion
3.1. Surface Activity
3.2. Foam Performance
3.2.1. Counterions
3.2.2. Inorganic Salts
3.3. Comparison with SDS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| LG | Lauroyl glutamate |
| SLG | Sodium lauroyl glutamate |
| PLG | Potassium lauroyl glutamate |
| ALG | Ammonium lauroyl glutamate |
| SDS | Sodium dodecyl sulfate |
References
- Guo, J.; Sun, L.; Zhang, F.; Sun, B.; Xu, B.; Zhou, Y. Review: Progress in synthesis, properties and application of amino acid surfactants. Chem. Phys. Lett. 2022, 794, 139499. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Fang, Y.; Sun, Y.; Li, H.; Xia, Y. The α-Substituent effect of amino acids on performance of N-Lauroyl amino acid surfactants. J. Mol. Liq. 2024, 409, 125397. [Google Scholar] [CrossRef]
- Moshikur, R.M.; Chowdhury, M.R.; Wakabayashi, R.; Tahara, Y.; Moniruzzaman, M.; Goto, M. Characterization and cytotoxicity evaluation of biocompatible amino acid esters used to convert salicylic acid into ionic liquids. Int. J. Pharm. 2018, 546, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Mustahil, N.A.; Baharuddin, S.H.; Abdullah, A.A.; Reddy, A.V.B.; Abdul Mutalib, M.I.; Moniruzzaman, M. Synthesis, characterization, ecotoxicity and biodegradability evaluations of novel biocompatible surface active lauroyl sarcosinate ionic liquids. Chemosphere 2019, 229, 349–357. [Google Scholar] [CrossRef]
- Alam, W.S.; Gitamara, S.; Wartakusumah, R.; Nurdin, M.I.; Masyithah, Z. Implementation of amino acid as a natural feedstock in production of N-acylamides as a biocompatible surfactants: A review on synthesis, behavior, application and scale-up process. J. Pure App. Chem. Res. 2022, 11, 9–30. [Google Scholar] [CrossRef]
- Ananthapadmanabhan, K.P. Amino-acid surfactants in personal cleansing (review). Tenside Surfactants Deterg. 2019, 56, 378–386. [Google Scholar] [CrossRef]
- Prakash, S.A.; Kamlekar, R.K. Function and therapeutic potential of N-acyl amino acids. Chem. Phys. Lipids 2021, 239, 105114. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ménard-Moyon, C.; Bianco, A. Self-assembly of amphiphilic amino acid derivatives for biomedical applications. Chem. Soc. Rev. 2022, 51, 3535–3560. [Google Scholar] [CrossRef] [PubMed]
- Barai, M.; Manna, E.; Sultana, H.; Mandal, M.K.; Guchhait, K.C.; Manna, T.; Patra, A.; Chang, C.-H.; Moitra, P.; Ghosh, C. Micro-structural investigations on oppositely charged mixed surfactant gels with potential dermal applications. Sci. Rep. 2021, 11, 15527. [Google Scholar] [CrossRef]
- Ichihara, K.; Sugahara, T.; Akamatsu, M.; Sakai, K.; Sakai, H. Rheology of α-gel formed by amino acid-based surfactant with long-chain alcohol: Effects of inorganic salt concentration. Langmuir 2021, 37, 7032–7038. [Google Scholar] [CrossRef]
- Aramaki, K.; Shiozaki, Y.; Kosono, S.; Ikeda, N. Coacervation in cationic polyelectrolyte solutions with anionic amino acid surfactants. J. Oleo Sci. 2020, 69, 1411–1416. [Google Scholar] [CrossRef]
- Barai, M.; Mandal, M.K.; Karak, A.; Bordes, R.; Patra, A.; Dalai, S.; Panda, A.K. Interfacial and aggregation behavior of dicarboxylic amino acid-based surfactants in combination with a cationic surfactant. Langmuir 2019, 35, 15306–15314. [Google Scholar] [CrossRef] [PubMed]
- Barai, M.; Mandal, M.K.; Sultana, H.; Manna, E.; Das, S.; Nag, K.; Ghosh, S.; Patra, A.; Panda, A.K. Theoretical approaches on the synergistic interaction between double-headed anionic amino acid-based surfactants and hexadecyltrimethylammonium bromide. J. Surfactants Deterg. 2020, 23, 891–902. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, Z.; Zhu, H.; Zhang, Q. Mixed micellization of cationic/anionic amino acid surfactants: Synergistic effect of sodium lauroyl glutamate and alkyl tri-methyl ammonium chloride. J. Dispers. Sci. Technol. 2022, 43, 2227–2239. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; He, B.; Huang, J.; Xu, H. Study on the compounding of sodium N-lauroyl glutamate and cationic cellulose. Tenside Surfactants Deterg. 2022, 59, 492–500. [Google Scholar] [CrossRef]
- Ikeda, N.; Aramaki, K. Hydrogel formation by glutamic-acid-based organogelator using surfactant-mediated gelation. J. Oleo Sci. 2022, 71, 1169–1180. [Google Scholar] [CrossRef]
- Zhang, Q.; He, C.; Zhang, D.; Jiang, W.; Zhang, W. Research on viscoelastic properties of SLG-LHSB system: Effects of pH and concentration on micelles in the system. J. Mol. Liq. 2022, 367, 120593. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, Y.; Deng, Q.; Qi, X.; Sun, H.; Li, Y. Study of the environmental responsiveness of amino acid-based surfactant sodium lauroylglutamate and its foam characteristics. Colloids Surf. A-Physicochem. Eng. Asp. 2016, 504, 384–392. [Google Scholar] [CrossRef]
- Wang, Q.; Song, Z.; Han, F.; Xu, B.; Xu, B. Synthesis and properties of pH-dependent N-acylglutamate/aspartate surfactants. Colloids Surf. A-Physicochem. Eng. Asp. 2022, 640, 128474. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhang, H.; Song, X.; Wang, Z.; Wang, X.; Li, Y. Comparative study on foaming and foam stability of multiple mixed systems of fluorocarbon, hydrocarbon, and amino acid surfactants. J. Surfactants Deterg. 2023, 26, 683–691. [Google Scholar] [CrossRef]
- Han, W.; Lv, H.; Fan, J.; Qiang, T.; Liu, C.; Ji, Y.; Dong, S. Investigation of a highly efficient foaming mixture compromising cationic Gemini-zwitterionic-anionic surfactants for gas well deliquification. Tenside Surfactants Deterg. 2024, 61, 265–276. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Y.; Hu, X.; Sun, Y.; Li, H.; Xia, Y. Predicting the foamability of N-acyl amino acid surfactants via noncovalent interactions. Colloids Surf. A-Physicochem. Eng. Asp. 2025, 709, 136072. [Google Scholar] [CrossRef]
- Xu, L.; He, Z.; Han, F.; Zhou, Y.; Xu, B. Synthesis and properties of two amino carboxylic acid gemini surfactants. J. Surfactants Deterg. 2020, 23, 1033–1041. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T.B. Surfactants and Interfacial Phenomena, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 67–69. [Google Scholar]
- Vlachy, N.; Jagoda-Cwiklik, B.; Vácha, R.; Touraud, D.; Jungwirth, P.; Kunz, W. Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv. Colloid Interface Sci. 2009, 146, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.D.; Neilson, G.W.; Enderby, J.E. Ions in water: Characterizing the forces that control chemical processes and biological structure. Biophys. Chem. 2007, 128, 95–104. [Google Scholar] [CrossRef]
- Qazi, M.J.; Schlegel, S.J.; Backus, E.H.G.; Bonn, M.; Bonn, D.; Shahidzadeh, N. Dynamic surface tension of surfactants in the presence of high salt concentrations. Langmuir 2020, 36, 7956–7964. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, Y.; Wang, P.; Liu, R.; Jiang, Y. Influence of inorganic salt additives on the surface tension of sodium dodecylbenzene sulfonate solution. Processes 2023, 11, 1708. [Google Scholar] [CrossRef]
- Israelachvili, J.N.B. Intermolecular and Surface Forces, 3rd ed.; Academic Press: Boston, MA, USA, 2011; pp. 309–311. [Google Scholar]
- Le Roux, S.; Roché, M.; Cantat, I.; Saint-Jalmes, A. Soluble surfactant spreading: How the amphiphilicity sets the Marangoni hydrodynamics. Phys. Rev. E 2016, 93, 013107. [Google Scholar] [CrossRef]
- Yaminsky, V.V.; Ohnishi, S.; Vogler, E.A.; Horn, R.G. Stability of Aqueous Films between Bubbles. Part 1. The Effect of Speed on Bubble Coalescence in Purified Water and Simple Electrolyte Solutions. Langmuir 2010, 26, 8061–8074. [Google Scholar] [CrossRef]
- Danov, K.D.; Kralchevsky, P.A.; Denkov, N.D.; Ananthapadmanabhan, K.P.; Lips, A. Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity. Adv. Colloid Interface Sci. 2006, 119, 1–16. [Google Scholar] [CrossRef]
- Danov, K.D.; Kralchevsky, P.A.; Denkov, N.D.; Ananthapadmanabhan, K.P.; Lips, A. Mass transport in micellar surfactant solutions: 2. Theoretical modeling of adsorption at a quiescent interface. Adv. Colloid Interface Sci. 2006, 119, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Denkov, N.; Tcholakova, S.; Politova-Brinkova, N. Physicochemical control of foam properties. Curr. Opin. Colloid Interface Sci. 2020, 50, 101376. [Google Scholar] [CrossRef]
- Roché, M.; Li, Z.; Griffiths, I.M.; Le Roux, S.; Cantat, I.; Saint-Jalmes, A.; Stone, H.A. Marangoni Flow of Soluble Amphiphiles. Phys. Rev. Lett. 2014, 112, 208302. [Google Scholar] [CrossRef]
- Zhao, G.X.; Zhu, B.Y.B. Principles of Surfactant Action; China Light Industry Press: Beijing, China, 2003; p. 137. [Google Scholar]
- Schelero, N.; Hedicke, G.; Linse, P.; Klitzing, R.v. Effects of counterions and co-ions on foam films stabilized by anionic dodecyl sulfate. J. Phys. Chem. B 2010, 114, 15523–15529. [Google Scholar] [CrossRef]
- Emami, H.; Ayatizadeh Tanha, A.; Khaksar Manshad, A.; Mohammadi, A.H. Experimental investigation of foam flooding using anionic and nonionic surfactants: A screening scenario to assess the effects of salinity and pH on foam stability and foam height. ACS Omega 2022, 7, 14832–14847. [Google Scholar] [CrossRef]
- Zamanis, A.T.; Evgenidis, S.P.; Karapantsios, T.D.; Kostoglou, M. An Innovative Approach for Assessing Foam Stability Based on Electrical Conductivity Measurements of Liquid Films. Colloids Interfaces 2025, 9, 52. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Mahmoudvand, M.; Javadi, A.; Bahramian, A.; Miller, R.; Eckert, K. Salt Effects on Formation and Stability of Colloidal Gas Aphrons Produced by Anionic and Zwitterionic Surfactants in Xanthan Gum Solution. Colloids Interfaces 2020, 4, 9. [Google Scholar] [CrossRef]
- Pandey, S.; Bagwe, R.P.; Shah, D.O. Effect of counterions on surface and foaming properties of dodecyl sulfate. J. Colloid Interface Sci. 2003, 267, 160–166. [Google Scholar] [CrossRef]
- Jiang, N.; Yu, X.; Sheng, Y.; Zong, R.; Li, C.; Lu, S. Role of salts in performance of foam stabilized with sodium dodecyl sulfate. Chem. Eng. Sci. 2020, 216, 115474. [Google Scholar] [CrossRef]













| Surfactant | cmc mol·L−1 | mN·m−1 | mol·cm−2 | nm2·molecule−1 | pC20 |
|---|---|---|---|---|---|
| SLG | 2.46 × 10−2 | 35.01 | 1.47 × 10−10 | 1.13 | 2.31 |
| PLG | 2.48 × 10−2 | 35.37 | 1.44 × 10−10 | 1.15 | 2.31 |
| ALG | 2.36 × 10−2 | 35.01 | 1.47 × 10−10 | 1.13 | 2.34 |
| SLG + 1%NaCl | 8.29 × 10−3 | 37.48 | 3.64 × 10−10 | 0.46 | 2.82 |
| SLG + 3%NaCl | 4.19 × 10−3 | 35.75 | 4.06 × 10−10 | 0.41 | 3.12 |
| SLG + 5%NaCl | 2.79 × 10−3 | 34.73 | 3.79 × 10−10 | 0.44 | 3.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, T.; Han, F. Systematic Study of Counterion Effects and NaCl-Induced Modulation of Foam Performance in Lauroyl Glutamate Surfactants. Colloids Interfaces 2025, 9, 82. https://doi.org/10.3390/colloids9060082
Cao T, Han F. Systematic Study of Counterion Effects and NaCl-Induced Modulation of Foam Performance in Lauroyl Glutamate Surfactants. Colloids and Interfaces. 2025; 9(6):82. https://doi.org/10.3390/colloids9060082
Chicago/Turabian StyleCao, Tianyu, and Fu Han. 2025. "Systematic Study of Counterion Effects and NaCl-Induced Modulation of Foam Performance in Lauroyl Glutamate Surfactants" Colloids and Interfaces 9, no. 6: 82. https://doi.org/10.3390/colloids9060082
APA StyleCao, T., & Han, F. (2025). Systematic Study of Counterion Effects and NaCl-Induced Modulation of Foam Performance in Lauroyl Glutamate Surfactants. Colloids and Interfaces, 9(6), 82. https://doi.org/10.3390/colloids9060082

