A Bio-Based Collector Derived from Vitamin E for Hematite Flotation
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials and Reagents
Synthesis of Vitamin E Sodium Succinate (VE_SS)
2.2. Micro-Flotation Experiments
2.3. Method for Zeta Potential Measurement
2.4. Method for Contact Angle Measurement
2.5. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.6. X-Ray Photoelectron Spectroscopy (XPS)
3. Results and Discussion
3.1. Micro-Flotation
3.2. Zeta Potential Analysis
3.2.1. Zeta Potential of Hematite
3.2.2. Zeta Potential of Silica
3.3. Contact Angle Analysis
3.4. FTIR and XPS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, B.; Fu, Y.-F.; Yin, W.-Z.; Sheng, Q.-Y.; Zhu, Z.-L.; Yin, X.-M. Selective collection performance of an efficient quartz collector and its response to flotation separation of malachite from quartz. Miner. Eng. 2021, 172, 107174. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, W.; Song, S.; Gao, H.; Niu, F.; Zhang, J.; Ai, G. Selective separation of hematite from quartz with sodium oleate collector and calcium lignosulphonate depressant. J. Mol. Liq. 2021, 322, 114502. [Google Scholar] [CrossRef]
- Kulkarni, R.; Somasundaran, P. Flotation chemistry of hematite/oleate system. Colloids Surf. 1980, 1, 387–405. [Google Scholar] [CrossRef]
- Ma, M. Froth flotation of iron ores. Int. J. Min. Eng. Miner. Process. 2012, 1, 56–61. [Google Scholar] [CrossRef]
- Araujo, A.; Viana, P.; Peres, A. Reagents in iron ores flotation. Miner. Eng. 2005, 18, 219–224. [Google Scholar] [CrossRef]
- Jain, G.; Havskjold, H.; Dhar, P.; Ertesvåg, H.; Chernyshova, I.; Kota, H.R. Green foam-based methods of mineral and ion separation. In Multidisciplinary Advances in Efficient Separation Processes; ACS Publications: Washington, DC, USA, 2020; pp. 265–301. [Google Scholar]
- Oulkhir, A.; Lyamlouli, K.; Danouche, M.; Ouazzani, J.; Benhida, R. A critical review on natural surfactants and their potential for sustainable mineral flotation. Rev. Environ. Sci. Bio/Technol. 2023, 22, 105–131. [Google Scholar] [CrossRef]
- Amani, P.; Amiralian, N.; Athukoralalage, S.S.A.; Firouzi, M. Eco-efficient pickering foams: Leveraging sugarcane waste-derived cellulose nanofibres. J. Mater. Chem. A 2023, 11, 24379–24389. [Google Scholar] [CrossRef]
- Behera, S.K.; Mulaba-Bafubiandi, A.F. Microbes assisted mineral flotation a future prospective for mineral processing industries: A review. Miner. Process. Extr. Metall. Rev. 2017, 38, 96–105. [Google Scholar] [CrossRef]
- Asna, A.; Songli, A.; Nabilah, R.; Ikhsan, S.; Rickiadi, M.F.; Wahyuningsih, T. The Effect of Aloe Vera Bioreagent as a Frother and Collector in the Gold Ore Flotation Process on Increasing Grade and Recovery. J. Metall. Eng. Process. Technol. 2024, 4, 1–9. [Google Scholar] [CrossRef]
- Quast, K. Flotation of hematite using 18-carbon fatty acids. Miner. Eng. 2021, 160, 106647. [Google Scholar] [CrossRef]
- Schlebusch, I.; Pott, R.W.M.; Tadie, M. The ion flotation of copper, nickel, and cobalt using the biosurfactant surfactin. Discov. Chem. Eng. 2023, 3, 7. [Google Scholar] [CrossRef]
- Bu, X.; Chen, F.; Chen, W.; Ding, Y. The effect of whey protein on the surface property of the copper-activated marmatite in xanthate flotation system. Appl. Surf. Sci. 2019, 479, 303–310. [Google Scholar] [CrossRef]
- Yehia, A.; Khalek, M.A.; Ammar, M. Cellulase as a new phosphate depressant in dolomite-phosphate flotation. Physicochem. Probl. Miner. Process. 2017, 53, 1092–1104. [Google Scholar]
- Laitinen, O.; Hartmann, R.; Sirviö, J.A.; Liimatainen, H.; Rudolph, M.; Ämmälä, A.; Illikainen, M. Alkyl aminated nanocelluloses in selective flotation of aluminium oxide and quartz. Chem. Eng. Sci. 2016, 144, 260–266. [Google Scholar] [CrossRef]
- Nakhaei, F.; Irannajad, M. Reagents types in flotation of iron oxide minerals: A review. Miner. Process. Extr. Metall. Rev. 2018, 39, 89–124. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, X.; Han, Y.; Parra-Álvarez, N.; Claremboux, V.; Kawatra, S. Flotation of iron ores: A review. Miner. Process. Extr. Metall. Rev. 2021, 42, 184–212. [Google Scholar] [CrossRef]
- Joseph-Soly, S.; Quast, K.; Connor, J.N. Effects of Eh and pH on the oleate flotation of iron oxides. Miner. Eng. 2015, 83, 97–104. [Google Scholar] [CrossRef]
- Amani, P.; Hsia, T.; Thang, S.H.; Firouzi, M. Assessment of a bio-inspired frothing agent derived from Vitamin E in mineral processing. Miner. Eng. 2024, 218, 108974. [Google Scholar] [CrossRef]
- Sikorska, M.; Borowy-Borowski, H.; Zurakowski, B.; Walker, P.R. Derivatised α-tocopherol as a CoQ10 carrier in a novel water-soluble formulation. Biofactors 2003, 18, 173–183. [Google Scholar] [CrossRef]
- Yang, C.; Wu, T.; Qi, Y.; Zhang, Z. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics 2018, 8, 464–485. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, J.; Tan, S.; Otieno, B.O.; Zhang, Z. The applications of Vitamin E TPGS in drug delivery. Eur. J. Pharm. Sci. 2013, 49, 175–186. [Google Scholar] [CrossRef]
- Luiz, M.T.; Di Filippo, L.D.; Alves, R.C.; Araújo, V.H.S.; Duarte, J.L.; Marchetti, J.M.; Chorilli, M. The use of TPGS in drug delivery systems to overcome biological barriers. Eur. Polym. J. 2021, 142, 110129. [Google Scholar] [CrossRef]
- Yan, A.; Von Dem Bussche, A.; Kane, A.B.; Hurt, R.H. Tocopheryl polyethylene glycol succinate as a safe, antioxidant surfactant for processing carbon nanotubes and fullerenes. Carbon 2007, 45, 2463–2470. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.J.; Kawatra, S.K. Factors Affecting Zeta Potential of Iron Oxides. Miner. Process. Extr. Metall. Rev. 2013, 34, 269–303. [Google Scholar] [CrossRef]
- Abaka-Wood, G.B.; Addai-Mensah, J.; Skinner, W. A study of flotation characteristics of monazite, hematite, and quartz using anionic collectors. Int. J. Miner. Process. 2017, 158, 55–62. [Google Scholar] [CrossRef]
- Han, H.; Yin, W.; Yang, B.; Wang, D.; Yao, J.; Zhu, Z. Adsorption behavior of sodium oleate on iron minerals and its effect on flotation kinetics. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129108. [Google Scholar] [CrossRef]
- Chau, T.T. A review of techniques for measurement of contact angles and their applicability on mineral surfaces. Miner. Eng. 2009, 22, 213–219. [Google Scholar] [CrossRef]
- Iwasaki, I.; Cooke, S.; Choi, H. Flotation characteristics of hematite, goethite, and activated quartz with 18-carbon aliphatic acids and related compounds. Am. Inst. Min. Metall. Pet. Engineers. Trans. 1960, 217, 237–244. [Google Scholar]
- Atrafi, A.; Gomez, C.O.; Finch, J.A.; Pawlik, M. Frothing behavior of aqueous solutions of oleic acid. Miner. Eng. 2012, 36–38, 138–144. [Google Scholar] [CrossRef]
- Shu, X.; Meng, Y.; Wan, L.; Li, G.; Yang, M.; Jin, W. pH-Responsive aqueous foams of oleic acid/oleate solution. J. Dispers. Sci. Technol. 2014, 35, 293–300. [Google Scholar] [CrossRef]
- Bai, S.; Li, J.; Bi, Y.; Yuan, J.; Wen, S.; Ding, Z. Adsorption of sodium oleate at the microfine hematite/aqueous solution interface and its consequences for flotation. Int. J. Min. Sci. Technol. 2023, 33, 105–113. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Y.; Zhang, L.; Zhu, G. Role of oleic acid ionic− molecular complexes in the flotation of spodumene. Miner. Eng. 2015, 71, 7–12. [Google Scholar] [CrossRef]
- Quast, K. Literature review on the interaction of oleate with non-sulphide minerals using zeta potential. Miner. Eng. 2016, 94, 10–20. [Google Scholar] [CrossRef]
- Quast, K. The use of zeta potential to investigate the interaction of oleate on hematite. Miner. Eng. 2016, 85, 130–137. [Google Scholar] [CrossRef]
- Parks, G.A. The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems. Chem. Rev. 1965, 65, 177–198. [Google Scholar] [CrossRef]
- Kosmulski, M. pH-dependent surface charging and points of zero charge: III. Update. J. Colloid Interface Sci. 2006, 298, 730–741. [Google Scholar] [CrossRef]
- Khandaker, S.; Willott, J.D.; Webber, G.B.; Wanless, E.J. Adsorption of polyacrylamides on mineral oxides: Effect of solution pH and polymer molecular weight. Miner. Eng. 2024, 206, 108547. [Google Scholar] [CrossRef]
- Ding, Z.; Li, J.; Yuan, J.; Yu, A.; Wen, S.; Bai, S. Insights into the influence of calcium ions on the adsorption behavior of sodium oleate and its response to flotation of quartz: FT-IR, XPS and AMF studies. Miner. Eng. 2023, 204, 108437. [Google Scholar] [CrossRef]
Component | Al2O3 (%) | SiO2 (%) | P2O5 (%) | SO3 (%) | Cl (%) | CaO (%) | Fe2O3 (%) |
---|---|---|---|---|---|---|---|
Concentration | 0.697 | 4.742 | 0.339 | 0.101 | 0.143 | 0.222 | 93.560 |
Component | Al2O3 (%) | SiO2 (%) | P2O5 (%) | Cl (%) | CaO (%) | Fe2O3 (%) |
---|---|---|---|---|---|---|
Concentration | 1.148 | 97.769 | 0.433 | 0.220 | 0.122 | 0.258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mensah, R.; Perera, T.D.S.; Hsia, T.; Amani, P.; Thang, S.H.; Firouzi, M. A Bio-Based Collector Derived from Vitamin E for Hematite Flotation. Colloids Interfaces 2025, 9, 24. https://doi.org/10.3390/colloids9020024
Mensah R, Perera TDS, Hsia T, Amani P, Thang SH, Firouzi M. A Bio-Based Collector Derived from Vitamin E for Hematite Flotation. Colloids and Interfaces. 2025; 9(2):24. https://doi.org/10.3390/colloids9020024
Chicago/Turabian StyleMensah, Rocky, Tammitage Danesh S. Perera, Tina Hsia, Pouria Amani, San H. Thang, and Mahshid Firouzi. 2025. "A Bio-Based Collector Derived from Vitamin E for Hematite Flotation" Colloids and Interfaces 9, no. 2: 24. https://doi.org/10.3390/colloids9020024
APA StyleMensah, R., Perera, T. D. S., Hsia, T., Amani, P., Thang, S. H., & Firouzi, M. (2025). A Bio-Based Collector Derived from Vitamin E for Hematite Flotation. Colloids and Interfaces, 9(2), 24. https://doi.org/10.3390/colloids9020024