Selective Aggregation of Fine Spodumene from Quartz with Anionic Polyacrylamide Flocculant and Calcium Activator
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Zeta Potential
2.2.2. Adsorption of Calcium: Inductively Coupled Plasma (ICP)
2.2.3. Adsorption Isotherms of Polymers: Total Organic Carbon (TOC)
2.2.4. Aggregation (Flocculation) Procedure
2.2.5. Aggregate Size Imaging and Measurement
2.2.6. Turbidity Measurement
2.2.7. Sedimentation Experiments
3. Results and Discussion
3.1. Mineral Surface Properties
3.1.1. Particle Size Characterisation
3.1.2. Zeta Potential Measurements
3.1.3. Adsorption Isotherms of Calcium
3.1.4. Adsorption Isotherms of Polymer
3.2. Aggregation Behaviour
3.2.1. Effect of Calcium Activation
3.2.2. Effects of Polymer Concentration
3.2.3. Effect of Calcium Concentration
3.2.4. Effects of Polymer Charge and Molecular Weight
3.3. Mapping of Aggregation Behaviour
3.3.1. Aggregate Size
3.3.2. Turbidity
3.4. Sedimentation Studies
3.5. Future Work
4. Conclusions
- The zeta potential and the adsorption measurements confirmed that Ca(II) reduces the negative surface charge of spodumene, K-feldspar, and quartz. A charge reversal occurred at approximately 10,000 g/t of Ca(II) for spodumene and 15,000 g/t for K-feldspar. The adsorption studies showed that Ca(II) preferentially adsorbs onto K-feldspar, followed by spodumene and quartz, enabling polymer attachment.
- The aggregation tests demonstrated that both spodumene and K-feldspar can be aggregated using Ca(II) and anionic polyacrylamide (PAM). Increasing the polymer dosage led to larger aggregates (100–150 μm), and a polymer concentration as low as 63–84 g/t was sufficient to induce aggregation. Aggregation was enhanced with Ca(II) dosages of up to 5000 g/t, but higher concentrations reduced the efficiency.
- A higher polymer molecular weight and higher charge density result in larger aggregates.
- Quartz showed limited aggregation under most conditions due to electrostatic repulsion between the anionic polymer and the negatively charged surface. Small aggregates were observed at high Ca(II) and polymer dosages.
- The selective aggregation of spodumene at 625 g/t of Ca(II) and 63–84 g/t of A150 (58% anionic charge) at pH 8.5 successfully avoided quartz aggregation in the single-mineral tests. The largest spodumene aggregates were formed at 2500 g/t of Ca(II) and 84 g/t of polymer.
- The sedimentation tests using mixed spodumene–quartz systems, however, showed limited separation due to the physical entrapment of quartz in the spodumene aggregates.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. XRD Characterisation
Appendix A.2. ICP-OES Characterisation
Al2O3 (%) | CaO (%) | Fe2O3 (%) | K2O (%) | Li (%) | SiO2 (%) | |
---|---|---|---|---|---|---|
Spodumene | 27.2 | 0.17 | 0.34 | 0.28 | 3.54 | 64.0 |
K-feldspar | 16.5 | 0.24 | 0.16 | 11.0 | 0.00 | 69.3 |
Quartz | 0.23 | 0.07 | 0.03 | 0.06 | 0.003 | >99 |
Appendix A.3. Particle Size Distributions and Scanning Electron Microscopy (SEM) Images of the Feed Materials
Appendix A.4. Zeta Potential: Repeat Measurements
Appendix A.5. Ca(II) Adsorption Isotherms: Repeat Measurements
Appendix A.6. Polymer Adsorption Isotherms: Repeat Measurements
Appendix A.7. Polymer Adsorption Isotherms
Appendix A.8. Polymer Adsorption Isotherms
Appendix A.9. Chord Length Distributions: Repeat Measurements
Appendix A.10. Calibration Curve for Assaying Spodumene
Appendix A.11. Speciation of (Ca(II)aq) as a Function of pH
Appendix A.12. Effect of Polymer Charge: Chord Length Distributions
Appendix A.13. Effect of Polymer Molecular Weight: Chord Length Distributions
Appendix A.14. Turbidity: Repeat Measurements
Polymer Concentration | Ca2+ Concentration | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 g/t | 312.5 g/t | 625 g/t | 1250 g/t | 2500 g/t | 5000 g/t | 10,000 g/t | 15,000 g/t | ||
Spodumene | 0 g/t | 4925 ± 46 | 4826 ± 54 | 4844 ± 91 | 4849 ± 59 | 4825 ± 62 | 4870 ± 111 | 4567 | 4984 |
21.05 g/t | 4583 | 327 ± 24 | 266 ± 5 | 371 ± 9 | 420 | 552 | 343 | 285 | |
42.11 g/t | 4579 | 328 ± 1 | 156 ± 11 | 150 ± 10 | 214 | 287 | 139 | 129 | |
63.17 g/t | 4785 | 173 ± 25 | 120 | 94 | 203 | 107 | 56 | 31 | |
84.22 g/t | 4589 | 161 | 117 | 150 | 200 | 21 | 216 | 174 | |
147.35 g/t | 3489 | 51 | 78 | 200 | 101 | 90 | 97 | 189 | |
280.73 g/t | 3456 | 23 | 77 | 142 | 61 | 48 | 64 | 210 | |
K-feldspar | 0 g/t | 5380 ± 59 | 5359 ± 11 | 5466 | 5615 ± 260 | 5448 ± 15 | 5234 | 5364 | 5289 |
21.05 g/t | 5753 ± 321 | 1832 ± 255 | 1127 ± 30 | 574 | 569 | 433 | 260 | 251 | |
42.11 g/t | 5852 ± 232 | 2656 ± 314 | 1376 ± 50 | 417 | 564 | 374 | 206 | 300 | |
63.17 g/t | 5430 | 2167 ± 395 | 1332 ± 30 | 590 | 355 | 211 | 366 | 136 | |
84.22 g/t | 5433 | 2739 | 1167 | 610 | 447 | 401 | 109 | 124 | |
147.35 g/t | 5609 | 2300 | 2592 | 1870 | 295 | 460 | 53 | 142 | |
280.73 g/t | 5304 | 1672 | 3593 | 2230 | 468 | 892 | 555 | 287 | |
Quartz | 0 g/t | 6434 ± 44 | 6517 ± 170 | 6462 ± 58 | 6430 | 6021 | 6520 | 6302 | 6013 |
21.05 g/t | 6500 | 6485 ± 474 | 6980 ± 490 | 5926 | 5890 | 2425 | 1591 | 833 | |
42.11 g/t | 6499 ± 21 | 6355 ± 365 | 6529 | 6540 | 5987 | 3098 | 1873 | 2108 | |
63.17 g/t | 6402 ± 163 | 6003 ± 5 | 7080 | 6549 | 5678 | 4629 | 5488 | 6317 | |
84.22 g/t | 6293 | 6566 | 6790 | 6578 | 5879 | 4559 | 3238 | 4268 | |
147.35 g/t | 6433 | 5070 | 6674 | 6536 | 5709 | 6429 | 5446 | 4966 | |
280.73 g/t | 6200 | 6000 | 4777 | 5924 | 5898 | 6076 | 6084 | 4501 |
References
- Sahoo, S.K.; Tripathy, S.K.; Nayak, A.; Hembrom, K.; Dey, S.; Rath, R.; Mohanta, M. Beneficiation of lithium bearing pegmatite rock: A review. Miner. Process. Extr. Metall. Rev. 2024, 45, 1–27. [Google Scholar] [CrossRef]
- Dessemond, C.; Lajoie-Leroux, F.; Soucy, G.; Laroche, N.; Magnan, J.-F. Spodumene: The lithium market, resources and processes. Minerals 2019, 9, 334. [Google Scholar] [CrossRef]
- Kundu, T.; Rath, S.S.; Das, S.K.; Parhi, P.K.; Angadi, S.I. Recovery of lithium from spodumene-bearing pegmatites: A comprehensive review on geological reserves, beneficiation, and extraction. Powder Technol. 2023, 415, 118142. [Google Scholar] [CrossRef]
- Salakjani, N.K.; Singh, P.; Nikoloski, A.N. Production of lithium—A literature review part 1: Pretreatment of spodumene. Miner. Process. Extr. Metall. Rev. 2020, 41, 335–348. [Google Scholar] [CrossRef]
- Ruberti, M. Pathways to Greener Primary Lithium Extraction for a Really Sustainable Energy Transition: Environmental Challenges and Pioneering Innovations. Sustainability 2024, 17, 160. [Google Scholar] [CrossRef]
- Nolan, B. Spodumene: Australia’s Lithium Mineral Hero: Commonwealth Scientific and Industrial Research Organisation (CSIRO). 2025. Available online: https://www.csiro.au/en/news/All/Articles/2025/March/Spodumene-Australias-lithium-mineral-hero (accessed on 1 May 2025).
- Li, Z.; Perry, C. Spodumene and Lithium Salts Prices: Exploring the Connection: Fastmarkets. 2025. Available online: https://www.fastmarkets.com/insights/relationship-spodumene-lithium-salts-prices/ (accessed on 1 April 2025).
- Kawenski Cook, B.; Aghamirian, M.; Gibson, C.E. Optimization of spodumene flotation with a fatty acid collector. Miner. Eng. 2023, 204, 108412. [Google Scholar] [CrossRef]
- Menéndez, M.; Vidal, J.; Toraño, J.; Gent, M. Optimisation of spodumene flotation. Eur. J. Miner. Process. Environ. Prot. 2004, 4, 130–135. [Google Scholar]
- Hoang, D.H.; Ebert, D.; Möckel, R.; Rudolph, M. Impact of Sodium Hexametaphosphate on the Flotation of Ultrafine Magnesite from Dolomite-Rich Desliming Tailings. Minerals 2021, 11, 499. [Google Scholar] [CrossRef]
- Lynch, A.J.; Johnson, N.; Manlapig, E.; Thorne, C. Mineral and Coal Flotation Circuits: Their simulation and Control; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Miettinen, T.; Ralston, J.; Fornasiero, D. The limits of fine particle flotation. Miner. Eng. 2010, 23, 420–437. [Google Scholar] [CrossRef]
- Yin, X.; Gupta, V.; Du, H.; Wang, X.; Miller, J.D. Surface charge and wetting characteristics of layered silicate minerals. Adv. Colloid Interface Sci. 2012, 179–182, 43–50. [Google Scholar] [CrossRef]
- Laskowski, J. Particle-Bubble Attachment in Flotation; Inist-CNRS: Nancy, France, 1974; Volume 6, pp. 223–235. [Google Scholar]
- Ralston, J. The influence of particle size and contact angle in flotation. In Developments in Mineral Processing; Elsevier: Amsterdam, The Netherlands, 1992; Volume 12, pp. 203–224. [Google Scholar]
- Trahar, W.J. A rational interpretation of the role of particle size in flotation. Int. J. Miner. Process. 1981, 8, 289–327. [Google Scholar] [CrossRef]
- Fosu, A.Y.; Kanari, N.; Bartier, D.; Hodge, H.; Vaughan, J.; Chagnes, A. Physico-Chemical Characteristics of Spodumene Concentrate and Its Thermal Transformations. Materials 2021, 14, 7423. [Google Scholar] [CrossRef]
- Xiang, G.; Tao, L.; Sun, W.; Xu, S.; Gao, Z. Mechanisms for the selective separation of spodumene from feldspar by sodium N-oleoylsarcosinate as an efficient collector. Appl. Surf. Sci. 2023, 636, 157821. [Google Scholar] [CrossRef]
- Bulatovic, S.M. Handbook of Flotation Reagents: Chemistry, Theory and Practice: Volume 1: Flotation of Sulfide Ores; Elsevier: Amsterdam, The Netherlands, 2007; Volume 2, p. 87. [Google Scholar]
- Tadesse, B.; Makuei, F.; Albijanic, B.; Dyer, L. The beneficiation of lithium minerals from hard rock ores: A review. Miner. Eng. 2019, 131, 170–184. [Google Scholar] [CrossRef]
- Jie, Z.; Weiqing, W.; Jing, L.; Yang, H.; Qiming, F.; Hong, Z. Fe (III) as an activator for the flotation of spodumene, albite, and quartz minerals. Miner. Eng. 2014, 61, 16–22. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, S.; Wang, W.; Zhang, J.; Yan, W.; Deng, J.; Feng, Q.; Huang, Y. The effects of Ca (II) and Mg (II) ions on the flotation of spodumene using NaOL. Miner. Eng. 2015, 79, 40–46. [Google Scholar] [CrossRef]
- Xu, L.; Hu, Y.; Wu, H.; Tian, J.; Liu, J.; Gao, Z.; Wang, L. Surface crystal chemistry of spodumene with different size fractions and implications for flotation. Sep. Purif. Technol. 2016, 169, 33–42. [Google Scholar] [CrossRef]
- Wang, Y.-h.; Yu, F.-s. Effects of metallic ions on the flotation of spodumene and beryl. J. China Univ. Min. Technol. 2007, 17, 35–39. [Google Scholar] [CrossRef]
- Tian, J.; Xu, L.; Wu, H.; Fang, S.; Deng, W.; Peng, T.; Sun, W.; Hu, Y. A novel approach for flotation recovery of spodumene, mica and feldspar from a lithium pegmatite ore. J. Clean. Prod. 2018, 174, 625–633. [Google Scholar] [CrossRef]
- Tian, M.; Gao, Z.; Sun, W.; Han, H.; Sun, L.; Hu, Y. Activation role of lead ions in benzohydroxamic acid flotation of oxide minerals: New perspective and new practice. J. Colloid Interface Sci. 2018, 529, 150–160. [Google Scholar] [CrossRef]
- Lu, S.; Song, S. Hydrophobic interaction in flocculation and flotation 1. Hydrophobic flocculation of fine mineral particles in aqueous solution. Colloids Surf. 1991, 57, 49–60. [Google Scholar] [CrossRef]
- Subrahmanyam, T.V.; Forssberg, K.S.E. Fine particles processing: Shear-flocculation and carrier flotation—A review. Int. J. Miner. Process. 1990, 30, 265–286. [Google Scholar] [CrossRef]
- Forbes, E. Shear, selective and temperature responsive flocculation: A comparison of fine particle flotation techniques. Int. J. Miner. Process. 2011, 99, 1–10. [Google Scholar] [CrossRef]
- Ng, W.S.; Connal, L.A.; Forbes, E.; Mohanarangam, K.; Franks, G.V. In situ investigation of aggregate sizes formed using thermo-responsive polymers: Effect of temperature and shear. J. Colloid Interface Sci. 2017, 494, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.S.; Sonsie, R.; Forbes, E.; Franks, G.V. Flocculation/flotation of hematite fines with anionic temperature-responsive polymer acting as a selective flocculant and collector. Miner. Eng. 2015, 77, 64–71. [Google Scholar] [CrossRef]
- Franks, G.V.; Li, H.; O’Shea, J.-P.; Qiao, G.G. Temperature responsive polymers as multiple function reagents in mineral processing. Adv. Powder Technol. 2009, 20, 273–279. [Google Scholar] [CrossRef]
- Li, M.; Xiang, Y.; Chen, T.; Gao, X.; Liu, Q. Separation of ultra-fine hematite and quartz particles using asynchronous flocculation flotation. Miner. Eng. 2021, 164, 106817. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, W.; Gao, Z.; Niu, F.; Wang, L.; Zhao, Y.; Gao, Y. Selective Flocculation Separation of Fine Hematite from Quartz Using a Novel Grafted Copolymer Flocculant. Minerals 2018, 8, 227. [Google Scholar] [CrossRef]
- Zhou, H.-P.; Hu, J.; Zhang, Y.-B.; Cao, Y.-J.; Luo, X.-P.; Tang, X.-K. Effectively enhancing recovery of fine spodumene via aggregation flotation. Rare Met. 2020, 39, 316–326. [Google Scholar] [CrossRef]
- Gao, J.; Sun, W.; Lyu, F. Understanding the activation mechanism of Ca2+ ion in sodium oleate flotation of spodumene: A new perspective. Chem. Eng. Sci. 2021, 244, 116742. [Google Scholar] [CrossRef]
- Huber, K. Calcium-induced shrinking of polyacrylate chains in aqueous solution. J. Phys. Chem. 2002, 97, 9825–9830. [Google Scholar] [CrossRef]
- Atesok, G.; Somasundaran, P.; Morgan, L. Adsorption properties of Ca2+ on Na-kaolinite and its effect on flocculation using polyacrylamides. Colloids Surf. 1988, 32, 127–138. [Google Scholar] [CrossRef]
- Caskey, J.A.; Primus, R.J. The effect of anionic polyacrylamide molecular conformation and configuration on flocculation effectiveness. Environ. Prog. 2006, 5, 98–103. [Google Scholar] [CrossRef]
- Peng, F.F.; Di, P. Effect of Multivalent Salts—Calcium and Aluminum on the Flocculation of Kaolin Suspension with Anionic Polyacrylamide. J. Colloid Interface Sci. 1994, 164, 229–237. [Google Scholar] [CrossRef]
- de Medeiros, R.B.; Thomas, C.A.; Franks, G.V. Selective aggregation of fine copper minerals using charged polyacrylamides. Colloids Surf. A Physicochem. Eng. Asp. 2024, 134396. [Google Scholar] [CrossRef]
- Eardley, J.C.; Thomas, C.A.; Franks, G.V. Selective aggregation of hematite from quartz using charged polyacrylamides: In-situ sizing. Miner. Eng. 2024, 217, 108924. [Google Scholar] [CrossRef]
- Camp, T.R. Velocity gradients and internal work in fluid motion. J. Boston Soc. Civ. Eng. 1943, 30, 219–230. [Google Scholar]
- Pandit, A.V.; Ranade, V.V. Chord length distribution to particle size distribution. AIChE J. 2016, 62, 4215–4228. [Google Scholar] [CrossRef]
- Wynn, E.J.W. Relationship between particle-size and chord-length distributions in focused beam reflectance measurement: Stability of direct inversion and weighting. Powder Technol. 2003, 133, 125–133. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, J.; He, G.; Hu, H.; Liu, C.; Yang, J.; Lyu, X. The effect of Al (III) and Fe (III) ions on the flotation behavior of Kfeldspar with sodium oleate as the collector. Physicochem. Probl. Miner. Process. 2023, 59, 174724. [Google Scholar]
- Fan, G.; Wang, L.; Cao, Y.; Li, C. Collecting Agent–Mineral Interactions in the Reverse Flotation of Iron Ore: A Brief Review. Minerals 2020, 10, 681. [Google Scholar] [CrossRef]
- Yukselen-Aksoy, Y.; Kaya, A. A study of factors affecting on the zeta potential of kaolinite and quartz powder. Environ. Earth Sci. 2010, 62, 697–705. [Google Scholar] [CrossRef]
- Vidyadhar, A.; Kumari, N.; Bhagat, R. Flotation of quartz and hematite: Adsorption mechanism of mixed cationic/anionic collector systems. In Proceedings of the XXVI International Mineral Processing Congress (IMPC-2012), New Delhi, India, 24–28 September 2012. [Google Scholar]
- Franks, G.V. Zeta Potentials and Yield Stresses of Silica Suspensions in Concentrated Monovalent Electrolytes: Isoelectric Point Shift and Additional Attraction. J. Colloid Interface Sci. 2002, 249, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.S.; Wang, Y.H.; Wang, J.M.; Xie, Z.F. Invetigation on different behavior and mechanism of Ca2+, Fe3+ adsorption on spodumente surface. Physicochem. Probl. Miner. Process. 2014, 50, 535–550. [Google Scholar] [CrossRef]
- Ozkan, A.; Ucbeyiay, H.; Duzyol, S. Comparison of stages in oil agglomeration process of quartz with sodium oleate in the presence of Ca (II) and Mg (II) ions. J. Colloid Interface Sci. 2009, 329, 81–88. [Google Scholar] [CrossRef]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J.C. Sol–Gel based materials for biomedical applications. Prog. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef]
- Hao, H.; Li, L.; Yuan, Z.; Liu, J. Molecular arrangement of starch, Ca2+ and oleate ions in the siderite-hematite-quartz flotation system. J. Mol. Liq. 2018, 254, 349–356. [Google Scholar] [CrossRef]
- Cooke, S.R.B. The Flotation of Quartz Using Calcium Ion as Activator. Trans. Am. Inst. Min. Metall. Eng. 1949, 184, 306–309. [Google Scholar]
- Wang, L.; Wang, G.; Ge, P.; Sun, W.; Tang, H.; Hu, W. Activation mechanisms of quartz flotation with calcium ions and cationic/anionic mixed collectors under alkalescent conditions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 632, 127771. [Google Scholar] [CrossRef]
- Hunter, R.J. Foundations of Colloid Science, 2nd ed.; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Rhodes, M.J. Introduction to Particle Technology, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2008. [Google Scholar]
- Ma, Z.; Tian, J.; Xu, L.; Li, C.; Wang, D.; Xue, K. Comparison of surface physicochemical properties of spodumene and feldspar using different grinding media: Implications for flotation separation. Miner. Eng. 2024, 216, 108878. [Google Scholar] [CrossRef]
- Moon, K.S.; Fuerstenau, D.W. Surface crystal chemistry in selective flotation of spodumene (LiAl [SiO3]2) from other aluminosilicates. Int. J. Miner. Process. 2003, 72, 11–24. [Google Scholar] [CrossRef]
- Cui, M.; Li, Y.; Zhang, Y.; Zhu, G.; Wang, Y.; Lu, D.; Zheng, X. The relationship between spodumene surface pretreatment and flotation behavior: A review. Sep. Sci. Technol. 2024, 59, 464–480. [Google Scholar] [CrossRef]
- Xie, R.; Zhu, Y.; Liu, J.; Li, Y. Effects of metal ions on the flotation separation of spodumene from feldspar and quartz. Miner. Eng. 2021, 168, 106931. [Google Scholar] [CrossRef]
- Ruan, Y.; Zhang, Z.; Luo, H.; Xiao, C.; Zhou, F.; Chi, R. Effects of Metal Ions on the Flotation of Apatite, Dolomite and Quartz. Minerals 2018, 8, 141. [Google Scholar] [CrossRef]
- Luo, A.; Chen, J. Effect of hydration and hydroxylation on the adsorption of metal ions on quartz surfaces: DFT study. Appl. Surf. Sci. 2022, 595, 153553. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Duan, H.; Wang, B.; Han, C.; Wei, D. The adsorption mechanism of calcium ion on quartz (101) surface: A DFT study. Powder Technol. 2018, 329, 158–166. [Google Scholar] [CrossRef]
- Feng, Q.; Wen, S.; Zhao, W.; Chen, Y. Effect of calcium ions on adsorption of sodium oleate onto cassiterite and quartz surfaces and implications for their flotation separation. Sep. Purif. Technol. 2018, 200, 300–306. [Google Scholar] [CrossRef]
- Luo, X.; Lin, Q.; Wang, Y.; Tian, M.; Lai, H.; Bai, S.; Zhou, Y. New insights into the activation mechanism of calcium species to quartz: ToF-SIMS and AFM investigation. Miner. Eng. 2020, 153, 106398. [Google Scholar] [CrossRef]
- Cao, M.; Bu, H.; Li, S.; Meng, Q.; Gao, Y.; Ou, L. Impact of differing water hardness on the spodumene flotation. Miner. Eng. 2021, 172, 107159. [Google Scholar] [CrossRef]
- Amarante, M.M.; de Sousa, A.B.; Leite, M.M. Processing a spodumene ore to obtain lithium concentrates for addition to glass and ceramic bodies. Miner. Eng. 1999, 12, 433–436. [Google Scholar] [CrossRef]
- Tian, J.; Xu, L.; Deng, W.; Jiang, H.; Gao, Z.; Hu, Y. Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system. Chem. Eng. Sci. 2017, 164, 99–107. [Google Scholar] [CrossRef]
- Xu, L.; Jiao, F.; Jia, W.; Pan, Z.; Hu, C.; Qin, W. Selective flotation separation of spodumene from feldspar using mixed anionic/nonionic collector. Colloids Surf. A Physicochem. Eng. Asp. 2020, 594, 124605. [Google Scholar] [CrossRef]
- Xu, L.; Hu, Y.; Tian, J.; Wu, H.; Yang, Y.; Zeng, X.; Wang, Z.; Wang, J. Selective flotation separation of spodumene from feldspar using new mixed anionic/cationic collectors. Miner. Eng. 2016, 89, 84–92. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Yu, F.; Lu, D.; Wang, L.; Zhao, Y.; Zheng, H. Improving spodumene flotation using a mixed cationic and anionic collector. Physicochem. Probl. Miner. Process. 2018, 54, 567–577. [Google Scholar] [CrossRef]
- Xie, R.; Zhu, Y.; Li, Y.; Han, Y. Flotation behavior and mechanism of a new mixed collector on separation of spodumene from feldspar. Colloids Surf. A Physicochem. Eng. Asp. 2020, 599, 124932. [Google Scholar] [CrossRef]
- Xie, R.; Zhu, Y.; Liu, J.; Li, Y. The flotation behavior and adsorption mechanism of a new cationic collector on the separation of spodumene from feldspar and quartz. Sep. Purif. Technol. 2021, 264, 118445. [Google Scholar] [CrossRef]
- Wu, H.; Tian, J.; Xu, L.; Fang, S.; Zhang, Z.; Chi, R. Flotation and adsorption of a new mixed anionic/cationic collector in the spodumene-feldspar system. Miner. Eng. 2018, 127, 42–47. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, Y.; Wang, X.; Yu, F.; Miller, J.D. States of coadsorption for oleate and dodecylamine at selected spodumene surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 313–321. [Google Scholar] [CrossRef]
- Shu, K.; Xu, L.; Wu, H.; Xu, Y.; Luo, L.; Yang, J.; Tang, Z.; Wang, Z. In Situ Adsorption of Mixed Anionic/Cationic Collectors in a Spodumene–Feldspar Flotation System: Implications for Collector Design. Langmuir 2020, 36, 8086–8099. [Google Scholar] [CrossRef]
- Xie, R.; Zhu, Y.; Liu, J.; Li, Y. Flotation behavior and mechanism of α-bromododecanoic acid as collector on the flotation separation of spodumene from feldspar and quartz. J. Mol. Liq. 2021, 336, 116303. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Zhang, L.; Lu, D.; Wang, L.; Zhao, Y.; Zheng, H. Surface dissolution of spodumene and its role in the flotation concentration of a spodumene ore. Miner. Eng. 2018, 125, 120–125. [Google Scholar] [CrossRef]
- Ma, Z.; Xu, L.; Guo, W.; Wang, D.; Xue, K. Effects of alkali pretreatment on the flotation of spodumene and feldspar. Miner. Eng. 2024, 210, 108676. [Google Scholar] [CrossRef]
- Zhu, G.; Zhao, Y.; Zheng, X.; Wang, Y.; Zheng, H.; Lu, D. Understanding the role of sodium hydroxide in the selective flotation separation of spodumene from feldspar and quartz. Miner. Eng. 2020, 159, 106648. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, N.; Chu, H.; Zheng, X.; Lu, D.; Zheng, H. Surface dissolution behavior and its influences on the flotation separation of spodumene from silicates. Sep. Sci. Technol. 2021, 56, 1407–1417. [Google Scholar] [CrossRef]
- Guo, W.; Fang, J.; Liu, M.; Li, Y.; Wang, D.; Xue, K.; Tian, J.; Shu, K.; Wang, Z.; Xie, L.; et al. Ultrasound-assisted alkali pretreatment enhances the flotation of spodumene. Colloids Surf. A Physicochem. Eng. Asp. 2025, 716, 136685. [Google Scholar] [CrossRef]
- Dai, L.; Feng, B.; Zhang, L.; Chen, Y.; Bayoundoula, J. Selective flotation separation of spodumene and quartz with carboxylated chitosan as depressant. Miner. Eng. 2023, 203, 108343. [Google Scholar] [CrossRef]
- Yongbing, Z.; Hepeng, Z.; Yijun, C.; Xianping, L.; Fanxin, X.; Boyuan, Z.; Siqi, Y. Activation mechanism of calcium hydrolysate on the spodumene surface and its effect on the adsorption of collector. Miner. Eng. 2021, 174, 107221. [Google Scholar] [CrossRef]
- Filippov, L.; Farrokhpay, S.; Lyo, L.; Filippova, I. Spodumene Flotation Mechanism. Minerals 2019, 9, 372. [Google Scholar] [CrossRef]
- Retamal, J.I.; Robles, P.A.; Quezada, G.R.; Jeldres, R.I. Molecular Design and Spodumene Flotation—A Review. Int. J. Mol. Sci. 2024, 25, 3227. [Google Scholar] [CrossRef]
Polymer | Charge Density | Molecular Weight (MDa) | Manufacturer |
---|---|---|---|
Cyfloc A100 | 6.4% | 10–15 | Syensqo |
Cyfloc A130 | 30% | 10–15 | Syensqo |
Cyfloc A150 | 58% | 10–15 | Syensqo |
Cyfloc N100 | <2% | 10–15 | Syensqo |
AN934 BPM | 30% | 6 | SNF |
AN934 | 30% | 11–14 | SNF |
AN934 VHM | 30% | 16.5–22.5 | SNF |
Experiment | Solids Concentration | Composition * | Mixing Time | Settling Time |
---|---|---|---|---|
1 | 10 wt% | No polymer No calcium | 5 min | 2 min |
2 | 10 wt% | 42 g/t polymer 625 g/t calcium | 5 min | 2 min |
3 | 5 wt% | 42 g/t polymer 625 g/t calcium | 5 min | 2 min |
4 | 10 wt% | 42 g/t polymer 625 g/t calcium | 2 min | 2 min |
5 | 10 wt% | 42 g/t polymer 625 g/t calcium | 5 min | 1 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, D.; Ng, W.S.; Franks, G.V. Selective Aggregation of Fine Spodumene from Quartz with Anionic Polyacrylamide Flocculant and Calcium Activator. Colloids Interfaces 2025, 9, 36. https://doi.org/10.3390/colloids9030036
Luo D, Ng WS, Franks GV. Selective Aggregation of Fine Spodumene from Quartz with Anionic Polyacrylamide Flocculant and Calcium Activator. Colloids and Interfaces. 2025; 9(3):36. https://doi.org/10.3390/colloids9030036
Chicago/Turabian StyleLuo, Danni, Wei Sung Ng, and George V. Franks. 2025. "Selective Aggregation of Fine Spodumene from Quartz with Anionic Polyacrylamide Flocculant and Calcium Activator" Colloids and Interfaces 9, no. 3: 36. https://doi.org/10.3390/colloids9030036
APA StyleLuo, D., Ng, W. S., & Franks, G. V. (2025). Selective Aggregation of Fine Spodumene from Quartz with Anionic Polyacrylamide Flocculant and Calcium Activator. Colloids and Interfaces, 9(3), 36. https://doi.org/10.3390/colloids9030036