Fenugreek Polysaccharide Gum as a Depressant in the Flotation Separation of Gold Ore with a High Content of Clay Minerals
Abstract
:1. Introduction
2. Experimental
2.1. Samples and Reagents
2.2. Flotation Test
2.2.1. Micro-Flotation Test
2.2.2. Actual Ore Flotation Test
2.3. Contact Angle
2.4. Zeta Potential Measurements
2.5. FTIR Spectrometer
2.6. XPS Measurements
3. Results and Discussion
3.1. Flotation Tests
3.1.1. Single Mineral Flotation Test
3.1.2. Mixed Mineral Flotation Test
3.1.3. Actual Ore Test
3.1.4. Industrial Test
3.2. Contact Angle Tests
3.3. Electrokinetic Potentials
3.4. FTIR Measurements
3.5. XPS Detection
4. Conclusions
- (1)
- Pyrophyllite has good natural floatability, so it is difficult to separate arsenopyrite from it without a depressant. In addition, pyrophyllite with particle sizes less than 0.074 mm distinctly decreased the flotation of arsenopyrite. FGM can eliminate this adverse effect largely due to it selectively depressing the flotation of pyrophyllite.
- (2)
- For the actual ore flotation system, FGM still exhibited better selective depression performance on the gangue minerals compared with SHMP and silicate, resulting in a concentrate grade increase in laboratory closed-circuit flotation tests and industrial tests. FGM has the potential to achieve large-scale industrialization for the flotation of high-clay-content gold ore.
- (3)
- The selective adsorption of FGM onto the pyrophyllite (gangue mineral) surface was the foundation of the great performance exhibited for the pure mineral system and actual ore. This adsorption was established mainly through the interaction between the Al sites on the surface of pyrophyllite and the –OH on the molecular chain of FGM.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Zeng, Q.; Wei, Z.; Fan, H.; Yang, K.; Zhang, Z.; Li, X.; Liang, G.; Xia, F. Prospecting potential of the yanjingou gold deposit in the east kunlun orogen, nw china: Evidence from primary halo geochemistry and in situ pyrite thermoelectricity. Minerals 2021, 11, 1117. [Google Scholar] [CrossRef]
- Ming, P.; Li, F.; Chen, Z.; Xiong, Z.; Hu, M. Practice and Application of Regrinding and Re-election of Swept Concentrate from a Low-grade Difficult Gold Ore in Qinghai Province. Multipurp. Util. Miner. Resour. 2024, 45, 15–23. (In Chinese) [Google Scholar]
- Zhao, K.; Wang, X.; Yan, W.; Gu, G.; Wang, C.; Wang, Z.; Xu, L.; Peng, T. Depression mechanism of pyrophyllite by a novel polysaccharide xanthan gum. Miner. Eng. 2019, 132, 134–141. [Google Scholar]
- Zhang, N.; Nguyen, A.V.; Zhou, C. A review of the surface features and properties, surfactant adsorption and floatability of four key minerals of diasporic bauxite resources. Adv. Colloid Interface Sci. 2018, 254, 56–75. [Google Scholar] [PubMed]
- Pavlovic, M.; Dojcinovic, M.; Nikolic, J.; Terzic, A.; Pavicevic, V.; Drmanic, S.; Kurtanovic, E. Application of waste raw materials as a reinforcement for protective coatings based on pyrophyllite. Chem. Ind. Chem. Eng. Q. 2024. online-first. [Google Scholar]
- Somasundaran, P. An overview of the ultrafine problem. In Mineral Processing at a Crossroads: Problems and Prospects; Springer: Berlin/Heidelberg, Germany, 1986; pp. 1–36. [Google Scholar]
- Peng, Y.; Zhao, S. The effect of surface oxidation of copper sulfide minerals on clay slime coating in flotation. Miner. Eng. 2011, 24, 1687–1693. [Google Scholar]
- Chen, X.; Peng, Y. Managing clay minerals in froth flotation—A critical review. Miner. Process. Extr. Metall. Rev. 2018, 39, 289–307. [Google Scholar]
- Yu, Y.; Ma, L.; Cao, M.; Liu, Q. Slime coatings in froth flotation: A review. Miner. Eng. 2017, 114, 26–36. [Google Scholar]
- Kashif, N. Grinding, Flotation and Drying Performance of the Clay-Containing Ores. Doctoral Dissertation, Curtin University, Bentley, Australia, 2024. [Google Scholar]
- Liu, S.; Chen, X.; Lauten, R.A.; Peng, Y.; Liu, Q. Mitigating the negative effects of clay minerals on gold flotation by a lignosulfonate-based biopolymer. Miner. Eng. 2018, 126, 9–15. [Google Scholar]
- Demeusy, B.; Madanski, D.; Gaydardzhiev, S. Laboratory flotation study of the DPM Krumovgrad gold ore (Bulgaria)—Effects from improved collector suite and ore desliming. Miner. Eng. 2024, 208, 108596. [Google Scholar]
- Wang, L.; Shen, L.; Sun, W.; Zhang, X.; Zhang, Y.; Wang, Y. Selective flotation separation of smithsonite from dolomite by using sodium hexametaphosphate as a depressant. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129621. [Google Scholar] [CrossRef]
- Hoang, D.H.; Ebert, D.; Möckel, R.; Rudolph, M. Impact of Sodium Hexametaphosphate on the flotation of ultrafine magnesite from dolomite-rich desliming tailings. Minerals 2021, 11, 499. [Google Scholar] [CrossRef]
- Rao, D.S.; VijayaKumar, T.V.; Rao, S.S.; Prabhakar, S.; Raju, G.B. Effectiveness of sodium silicate as gangue depressants in iron ore slimes flotation. Int. J. Miner. Metall. Mater. 2011, 18, 515–522. [Google Scholar] [CrossRef]
- Long, T.; Zhao, H.; Wang, Y.; Yang, W.; Deng, S.; Xiao, W.; Lan, X.; Wang, Q. Synergistic mechanism of acidified water glass and carboxymethyl cellulose in flotation of nickel sulfide ore. Miner. Eng. 2022, 181, 107547. [Google Scholar] [CrossRef]
- Li, H.; Chai, W.; Cao, Y.; Yang, S. Flotation enhancement of low-grade bauxite using oxalic acid as surface pretreatment agent. Appl. Surf. Sci. 2022, 577, 151964. [Google Scholar] [CrossRef]
- Li, B.; Zhang, G.; Liu, D.; Chen, J. Selective alteration mechanisms of sodium tripolyphosphate towards serpentine: Implications for flotation of pyrite from serpentine. J. Mol. Liq. 2022, 368, 120687. [Google Scholar] [CrossRef]
- Salarbashi, D.; Bazeli, J.; Fahmideh-Rad, E. Fenugreek seed gum: Biological properties, chemical modifications, and structural analysis—A review. Int. J. Biol. Macromol. 2019, 138, 386–393. [Google Scholar] [CrossRef]
- Nalbantova, V.; Benbassat, N.; Delattre, C. Fenugreek Galactomannan and Its Versatile Applications. Polysaccharides 2024, 5, 478–492. [Google Scholar] [CrossRef]
- De, A.; Mishra, S. Synthesis of fenugreek gum-based metal–organic framework (FG/Zr-AIPA MOF) composite beads for sequestration of heavy metal ions from aqueous solution. Environ. Sci. Pollut. Res. 2024, 31, 32571–32587. [Google Scholar] [CrossRef]
- Lgaz, H.; Chung, I.-M.; Salghi, R.; Ali, I.H.; Chaouiki, A.; El Aoufir, Y.; Khan, M.I. On the understanding of the adsorption of Fenugreek gum on mild steel in an acidic medium: Insights from experimental and computational studies. Appl. Surf. Sci. 2019, 463, 647–658. [Google Scholar] [CrossRef]
- Che, Y.; Chen, W.; Liu, S.; Zeng, G.; Liu, G. Exploring the highly efficient depressant role of fenugreek gum on talc in chalcopyrite flotation. Miner. Eng. 2024, 213, 108751. [Google Scholar]
- Luo, Y.; Zhang, G.; Li, C.; Mai, Q.; Liu, H.; Zhou, H.; Shi, Q. Flotation separation of smithsonite from calcite using a new depressant fenugreek gum. Colloids Surf. A Physicochem. Eng. Asp. 2019, 582, 123794. [Google Scholar]
- Zhang, Y.; Xu, Y.; Zhang, L.; Chen, Y.; Wu, T.; Liu, R.; Zhang, M. Licorice extract ameliorates hyperglycemia through reshaping gut microbiota structure and inhibiting TLR4/NF-κB signaling pathway in type 2 diabetic mice. Food Res. Int. 2022, 153, 110945. [Google Scholar] [PubMed]
- Ning, S.; Pei, B.; Ma, Y.; Li, J.; Liu, R.; Liu, D. Flotation separation of Galena from pyrite in a Low-alkalinity Media using Welan Gum as a new depressant. Miner. Process. Extr. Metall. Rev. 2024, 45, 790–802. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Haq, B.; Al Shehri, D.A. Hydrogen storage in depleted gas reservoirs using nitrogen cushion gas: A contact angle and surface tension study. Int. J. Hydrogen Energy 2023, 48, 38782–38807. [Google Scholar]
- Moseenkov, S.I.; Kuznetsov, V.L.; Zolotarev, N.A.; Kolesov, B.A.; Prosvirin, I.P.; Ishchenko, A.V.; Zavorin, A.V. Investigation of amorphous carbon in nanostructured carbon materials (A Comparative Study by TEM, XPS, Raman Spectroscopy and XRD). Materials 2023, 16, 1112. [Google Scholar] [CrossRef]
- Dai, L.; Feng, B.; Zhang, L.; Chen, Y.; Bayoundoula, J. Selective flotation separation of spodumene and quartz with carboxylated chitosan as depressant. Miner. Eng. 2023, 203, 108343. [Google Scholar]
- Saim, A.K.; Darteh, F.K. Eco-friendly and biodegradable depressants in chalcopyrite flotation: A review. Miner. Process. Extr. Metall. Rev. 2023, 44, 492–510. [Google Scholar]
- Wang, Y.; Tian, J.; Han, H.; Sun, W.; Zhang, X. The enhanced flotation separation of magnesite and dolomite by introducing chelating reagent EDTA. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132969. [Google Scholar]
- Mahroomi, M.; Abdollahi, H.; Gharabaghi, M.; Mirmohammadi, M.; Ebrahimi, E. The flotation of apatite and calcite using different reagents: A comparative study. Int. J. Min. Geo-Eng. 2024, 58, 341–350. [Google Scholar]
- Molifie, A.; Becker, M.; Geldenhuys, S.; McFadzean, B. Investigating the reasons for the improvement in flotation grade and recovery of an altered PGE ore when using sodium silicate. Miner. Eng. 2023, 195, 108024. [Google Scholar] [CrossRef]
- Moudgil, B.M. Correlation between froth viscosity and flotation efficiency. Min. Metall. Explor. 1993, 10, 100–101. [Google Scholar]
- Zheng, Q.; Dong, L.; Shen, P.; Liu, D. A novel activation scheme for fine cassiterite flotation by using a metal ion modified collector. Colloids Surf. A Physicochem. Eng. Asp. 2025, 710, 136310. [Google Scholar]
- Liu, J.; Kong, D.; Xie, R.; Li, Y.; Zhu, Y.; Liu, C. Flotation behavior and mechanism of hydroxycitric acid as a depressant on the flotation separation of cassiterite from calcite. Miner. Eng. 2021, 170, 107046. [Google Scholar] [CrossRef]
- Xiao, Y.; Feng, J.; Yang, B.; Luo, H.; Zhou, F. The combination of calcium hypochlorite and fulvic acid as an efficient arsenopyrite depressant in Cu-As separation. Miner. Eng. 2024, 206, 108497. [Google Scholar]
- Nawrocka, A.; Krekora, M.; Niewiadomski, Z.; Miś, A. FTIR studies of gluten matrix dehydration after fibre polysaccharide addition. Food Chem. 2018, 252, 198–206. [Google Scholar]
- Dong, W.; Liu, R.; Wang, C.; Zhu, X.; Xie, Z.; Sun, W. Insight into selective depression of sodium thioglycallate on arsenopyrite flotation: Adsorption mechanism and constructure. J. Mol. Liq. 2023, 377, 121480. [Google Scholar]
- Zhao, S.M.; Wang, D.Z.; Hu, Y.H.; Liu, B.D.; Xu, J. The flotation behaviour of N-(3-aminopropyl)-dodecanamide on three aluminosilicates. Miner. Eng. 2003, 16, 1391–1395. [Google Scholar]
Elements | Au | Ag | S | As | SiO2 | Al2O3 | CaO |
---|---|---|---|---|---|---|---|
Content/% | 2.27 | 7.06 | 2.65 | 0.37 | 59.25 | 15.26 | 3.25 |
Elements | MgO | K2O | Na2O | TiO2 | P2O5 | TFe | Mn |
Content/% | 2.26 | 3.95 | 1.18 | 0.62 | 0.16 | 6.30 | 0.056 |
Elements | Cu | Zn | Ni | Co | FeO | C | |
Content/% | 0.006 | 0.056 | 0.007 | 0.007 | 2.25 | 1.15 |
Depressant Types | Product Name | Yield (%) | Au Grade (g/t) | Au Recovery (%) |
---|---|---|---|---|
Blank | Crude concentrate | 15.26 | 11.50 | 85.71 |
Sweep concentrate | 4.89 | 1.41 | 3.37 | |
Tailings | 79.85 | 0.28 | 10.92 | |
Raw ore | 100.00 | 2.047 | 100.00 | |
SHMP | Crude concentrate | 14.32 | 12.10 | 84.64 |
Sweep concentrate | 3.39 | 2.0 | 3.31 | |
Tailings | 82.29 | 0.3 | 12.06 | |
Raw ore | 100.00 | 2.048 | 100.00 | |
FGM | Crude concentrate | 12.61 | 13.40 | 83.45 |
Sweep concentrate | 5.23 | 2.00 | 5.19 | |
Tailings | 82.16 | 0.28 | 11.36 | |
Raw ore | 100.00 | 2.024 | 100.00 | |
Sodium silicate | Crude concentrate | 14.87 | 11.80 | 86.52 |
Sweep concentrate | 3.77 | 1.64 | 3.05 | |
Tailings | 81.36 | 0.26 | 10.43 | |
Raw ore | 100.00 | 2.028 | 100.00 |
Reagent System | Au Grade (g/t) | Recovery (%) | Yield (%) | Enrichment Ratio | ||
---|---|---|---|---|---|---|
Raw Ore | Concentrate | Tailings | ||||
Old reagent system | 1.39 | 14.60 | 0.24 | 84.12 | 8.01 | 10.50 |
New reagent system | 1.42 | 18.50 | 0.24 | 84.19 | 6.46 | 13.03 |
Reagent System | Au Grade (g/t) | Recovery (%) | Yield (%) | Enrichment Ratio | ||
---|---|---|---|---|---|---|
Raw Ore | Concentrate | Tailings | ||||
Old reagent system | 2.26 | 26.11 | 0.36 | 85.24 | 7.38 | 11.55 |
New reagent system | 2.28 | 30.97 | 0.35 | 85.62 | 6.30 | 13.54 |
Experimental Condition | Binding Energy (eV) | Chemical Shift (eV) | ||
---|---|---|---|---|
Al2p | Si2p | Al2p | Si2p | |
FGM is not added | 73.86 | 101.84 | - | - |
Adding 60 mg/L FGM | 71.59 | 100.43 | −2.27 | −1.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Q.; Ming, P.; Wang, X.; Li, F.; Wang, Z.; Zhao, K. Fenugreek Polysaccharide Gum as a Depressant in the Flotation Separation of Gold Ore with a High Content of Clay Minerals. Colloids Interfaces 2025, 9, 21. https://doi.org/10.3390/colloids9020021
Xing Q, Ming P, Wang X, Li F, Wang Z, Zhao K. Fenugreek Polysaccharide Gum as a Depressant in the Flotation Separation of Gold Ore with a High Content of Clay Minerals. Colloids and Interfaces. 2025; 9(2):21. https://doi.org/10.3390/colloids9020021
Chicago/Turabian StyleXing, Qingqing, Pingtian Ming, Xiaohui Wang, Fei Li, Zhen Wang, and Kaile Zhao. 2025. "Fenugreek Polysaccharide Gum as a Depressant in the Flotation Separation of Gold Ore with a High Content of Clay Minerals" Colloids and Interfaces 9, no. 2: 21. https://doi.org/10.3390/colloids9020021
APA StyleXing, Q., Ming, P., Wang, X., Li, F., Wang, Z., & Zhao, K. (2025). Fenugreek Polysaccharide Gum as a Depressant in the Flotation Separation of Gold Ore with a High Content of Clay Minerals. Colloids and Interfaces, 9(2), 21. https://doi.org/10.3390/colloids9020021