Study of Probiotic Bacteria Encapsulation for Potential Application in Enrichment of Fermented Beverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Microcapsule Preparation
2.2.2. Determination of the Encapsulation Efficiency and Loading Capacity
2.2.3. Determination of the Degree of Swelling
2.2.4. Fourier Transform Infrared Spectroscopy Analysis
2.2.5. Determination of Morphology
2.2.6. Release of Active Agents from the Microcapsules
2.2.7. Modeling the Behavior of Microcapsules with Active Agents in an Imitating Gastrointestinal Tract
3. Results and Discussion
3.1. Encapsulation Efficiency, Loading Capacity and Swelling Degree of Microcapsules
3.2. FTIR Characterization of Microcapsules Encapsulating BB, SE, and Their Combination BB + SE
3.3. Morphological Studies
3.4. Release of Active Agents from Microcapsules
3.5. Behavior of Active Agents Loaded Microcapsules in an Imitating Gastrointestinal Tract
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solieri, L.; Valentini, M.; Cattivelli, A.; Sola, L.; Helal, A.; Martini, S.; Tagliazucchi, D. Fermentation of whey protein concentrate by Streptococcus thermophilus strains releases peptides with biological activities. Process. Biochem. 2022, 121, 590–600. [Google Scholar] [CrossRef]
- Jitpakdee, J.; Kantachote, D.; Kanzaki, H.; Nitoda, T. Potential of lactic acid bacteria to produce functional fermented whey beverage with putative health promoting attributes. LWT 2022, 160, 113269. [Google Scholar] [CrossRef]
- Skryplonek, K.; Dmytrów, I.; Mituniewicz-Małek, A. Probiotic fermented beverages based on acid whey. J. Dairy Sci. 2019, 102, 7773–7780. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wu, D.; Xu, Y.; Yu, X. Engineering the optimum pH of β-galactosidase from Aspergillus oryzae for efficient hydrolysis of lactose. J. Dairy Sci. 2022, 105, 4772–4782. [Google Scholar] [CrossRef]
- Wherry, B.; Barbano, D.M.; Drake, M.A. Use of acid whey protein concentrate as an ingredient in nonfat cup set-style yogurt. J. Dairy Sci. 2019, 102, 8768–8784. [Google Scholar] [CrossRef] [PubMed]
- Molero, M.S.; Briñez, W.J. Probiotics Consumption Increment through the Use of Whey-Based Fermented Beverages. In Probiotics—Current Knowledge and Future Prospects; InTech: Houston, TX, USA, 2018. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; World Health Organization. Guidelines for the Evaluation of Probiotics in Food; Food and Agriculture Organization of the United Nations: Rome, Italy; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Saad, S.M.I. Probiotics and prebiotics: The state of the art. Braz. J. Pharm. Sci. 2006, 42, 1–16. [Google Scholar]
- Mgomi, F.C.; Yuan, L.; Farooq, R.; Lu, C.-L.; Yang, Z.-Q. Survivability and characterization of the biofilm-like probiotic Pediococcus pentosaceus encapsulated in calcium alginate gel beads. Food Hydrocoll. 2024, 156, 110253. [Google Scholar] [CrossRef]
- Shori, A.B. Microencapsulation improved probiotics survival during gastric transit. J. Biosci. 2017, 24, 1–5. [Google Scholar] [CrossRef]
- da Silva, M.N.; Tagliapietra, B.L.; Flores, V.D.A.; Richards, N.S.P.d.S. In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Curr. Res. Food Sci. 2021, 4, 320–325. [Google Scholar] [CrossRef]
- Champagne, C.P.; Gomes da Cruz, A.; Daga, M. Strategies to improve the functionality of probiotics in supplements and foods. Curr. Opin. Food Sci. 2018, 22, 160–166. [Google Scholar] [CrossRef]
- Krunić, T.Ž.; Rakin, M.B. Enriching alginate matrix used for probiotic encapsulation with whey protein concentrate or its trypsin-derived hydrolysate: Impact on antioxidant capacity and stability of fermented whey-based beverages. Food Chem. 2022, 370, 130931. [Google Scholar] [CrossRef] [PubMed]
- Zanjani, M.; Tarzia, B.; Sharifana, A.; Mohammadi, N. Microencapsulation of Probiotics by Calcium Alginate-gelatinized Starch with Chitosan Coating and Evaluation of Survival in Simulated Human Gastro-intestinal Condition. Iran J. Pharm. Res. (IJPR) 2014, 13, 843–852. [Google Scholar]
- Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in microencapsulation of probiotics: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 857–874. [Google Scholar] [CrossRef] [PubMed]
- Alemzadeh, E.; Oryan, A. Application of encapsulated probiotics in health care. J. Exp. Path. 2020, 1, 16–21. [Google Scholar]
- Ding, W.K.; Shah, N.P. Effect of Various Encapsulating Materials on the Stability of Probiotic Bacteria. J. Food Sci. 2009, 74, M100–M107. [Google Scholar] [CrossRef]
- Gaonkar, A.; Vasisht, N.; Khare, A.; Sobel, R. Microencapsulation in the Food Industry, 1st ed.; A Practical Implementation Guide; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Ozdal, T.; Yolci-Omeroglu, P.; Tamer, E.C. 6-Role of Encapsulation in Functional Beverages. In Biotechnological Progress and Beverage Consumption; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 195–232. [Google Scholar] [CrossRef]
- Nezamdoost-Sani, N.; Khaledabad, M.A.; Amiri, S.; Mousavi Khaneghah, A. Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: An updated review. Food Biosci. 2023, 52, 102433. [Google Scholar] [CrossRef]
- Amiri, S.; Abotalebi Kohneshahri, S.R.; Nabizadeh, F. The effect of unit operation and adjunct probiotic culture on physicochemical, biochemical, and textural properties of Dutch Edam cheese. LWT 2022, 155, 112859. [Google Scholar] [CrossRef]
- Thambiliyagodage, C.; Jayanetti, M.; Mendis, A.; Ekanayake, G.; Liyanaarachchi, H.; Vigneswaran, S. Recent Advances in Chitosan-Based Applications—A Review. Materials 2023, 16, 2073. [Google Scholar] [CrossRef]
- Xie, A.; Zhao, S.; Liu, Z.; Yue, X.; Shao, J.; Li, M.; Li, Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int. J. Biol. Macromol. 2023, 242, 124784. [Google Scholar] [CrossRef]
- Vlahoviček-Kahlina, K.; Jurić, S.; Marijan, M.; Mutaliyeva, B.; Khalus, S.V.; Prosyanik, A.V.; Vinceković, M. Synthesis, Characterization, and Encapsulation of Novel Plant Growth Regulators (PGRs) in Biopolymer Matrices. Int. J. Mol. Sci. 2021, 22, 1847. [Google Scholar] [CrossRef]
- Kudasova, D.; Mutaliyeva, B.; Vlahoviček-Kahlina, K.; Jurić, S.; Marijan, M.; Khalus, S.V.; Prosyanik, A.V.; Šegota, S.; Španić, N.; Vinceković, M. Encapsulation of Synthesized Plant Growth Regulator Based on Copper(II) Complex in Chitosan/Alginate Microcapsules. Int. J. Mol. Sci. 2021, 22, 2663. [Google Scholar] [CrossRef]
- Ta, L.P.; Bujna, E.; Antal, O.; Ladányi, M.; Juhász, R.; Szécsi, A.; Kun, S.; Sudheer, S.; Gupta, V.K.; Nguyen, Q.D. Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacteria Lactobacillus casei 01 strain. Int. J. Biol. Macromol. 2021, 183, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Peredo, A.; Beristain, C.; Pascual, L.; Azuara, E.; Jimenez, M. The effect of prebiotics on the viability of encapsulated probiotic bacteria. LWT 2016, 73, 191–196. [Google Scholar] [CrossRef]
- Ismail, S.A.; Hassan, A.A.; Nour, S.A.; El-Sayed, H.S. The production of stirred yogurt fortified with prebiotic xylooligosaccharide, probiotic and synbiotic microcapsules. Biocatal. Agric. Biotechnol. 2023, 50, 102729. [Google Scholar] [CrossRef]
- Zhou, Z.; Sarwar, A.; Xue, R.; Hu, G.; Wu, J.; Aziz, T.; Alasmari, A.F.; Yang, Z.; Yang, Z. Metabolomics analysis of potential functional metabolites in synbiotic ice cream made with probiotic Saccharomyces cerevisiae var. boulardii CNCM I-745 and prebiotic inulin. Food Chem. 2024, 454, 139839. [Google Scholar] [CrossRef] [PubMed]
- Prakash, K.S.; Bashir, K.; Mishra, V. Development of symbiotic litchi juice drink and its physiochemical, viability and sensory analysis. J. Food Process. Technol. 2017, 8, 1–6. [Google Scholar] [CrossRef]
- Kurek, J.M.; Krejpcio, Z. The functional and health-promoting properties of Stevia rebaudiana Bertoni and its glycosides with special focus on the antidiabetic potential–A review. J. Funct. Foods 2019, 61, 103465. [Google Scholar] [CrossRef]
- Jungersen, M.; Wind, A.; Johansen, E.; Christensen, J.E.; Stuer-Lauridsen, B.; Eskesen, D. The Science behind the Pro-biotic Strain Bifidobacterium Animalis Subsp. Lactis BB-12®. Microorganisms 2014, 2, 92–110. [Google Scholar] [CrossRef]
- Matera, M. Bifidobacteria, Lactobacilli... When, How and Why to Use Them; Global Pediatrics: New York, NY, USA, 2024; Volume 8, p. 100139. [Google Scholar] [CrossRef]
- Pyle, S. 2.23-Human Gut Microbiota and the Influence of Probiotics, Prebiotics, and Micronutrients. Compr. Gut Microbiota 2022, 2, 271–288. [Google Scholar] [CrossRef]
- Voblikova, T. Viability of the culture of Bifidobacterium bifidum immobilized by microencapsulation in dairy drink and the simulated gastrointestinal liquids. Vestnik MGTU 2019, 22, 305–313. [Google Scholar] [CrossRef]
- Hamman, J. Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems. Mar Drugs 2010, 8, 1305–1322. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef]
- Fu, J.; Cai, Y.; Le, Q.; Su, Z. Controlled release behavior of a pH-sensitive hydrogel microsphere based on modified alginate. Int. J. Biol. Macromol. 2018, 112, 218–225. [Google Scholar] [CrossRef]
- Aguilera, D.A.; Di Sante, L.S.; Pettignano, A.; Riccioli, R.; Roeske, J.; Albergati, L.; Corti, V.; Fochi, M.; Bernardi, L.; Quignard, F.; et al. Adsorption of a Chiral Amine on Alginate Gel Beads and Evaluation of its Efficiency as Heterogeneous Enantioselective Catalyst. Eur. J. Org. Chem. 2019, 2019, 3842–3849. [Google Scholar] [CrossRef]
- Xu, C.; Ban, Q.; Wang, W.; Hou, J.; Jiang, Z. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. J. Control. Release 2022, 349, 184–205. [Google Scholar] [CrossRef]
- Burgain, J.; Corgneau, M.; Scher, J.; Gaiani, C. Chapter 20—Encapsulation of Probiotics in Milk Protein Microcapsules; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Dyatlova, Y.A.; Kenzhegulov, O.A.; Vladimirova, A.A.; Mamchenkova, P.V.; Tugarova, A.V. Fourier Transform Infrared (FTIR) Spectroscopic Analyses of Microbiological Samples and Biogenic Selenium Nanoparticles of Microbial Origin: Sample Preparation Effects. Molecules 2021, 26, 1146. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Dyatlova, Y.A.; Kenzhegulov, O.A.; Fedonenko, Y.P.; Evstigneeva, S.S.; Tugarova, A.V. Fourier Transform Infrared (FTIR) Spectroscopic Study of Biofilms Formed by the Rhizobacterium Azospirillum baldaniorum Sp245: Aspects of Methodology and Matrix Composition. Molecules 2023, 28, 1949. [Google Scholar] [CrossRef]
- Moreno, J.S.; Dima, P.; Chronakis, I.S.; Mendes, A.C. Electrosprayed Ethyl Cellulose Core-Shell Microcapsules for the Encapsulation of Probiotics. Pharmaceutics 2022, 14, 7. [Google Scholar] [CrossRef]
- Naumann, D. Infrared Spectroscopy in Microbiology. In Encyclopedia of Analytical Chemistry; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef]
- Naumann, D.; Helm, D.; Labischinski, H. Microbiological characterizations by FT-IR spectroscopy. Nature 1991, 351, 81–82. [Google Scholar] [CrossRef]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 185, 317–335. [Google Scholar] [CrossRef]
- Gordon, S.H.; Harry-O’kuru, R.E.; Mohamed, A.A. Elimination of interference from water in KBr disk FT-IR spectra of solid biomaterials by chemometrics solved with kinetic modeling. Talanta 2017, 174, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Baysal, K.; Aroguz, A.; Adiguzel, Z.; Baysal, B. Chitosan/Alginate Crosslinked Hydrogels: Preparation, Characterization and Application for Cell Growth Purposes. Int. J. Biol. Macromol. 2013, 59, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Vodnar, D.; Adriana, P.; Francisc, D.; Socaciu, C. HPLC Characterization of Lactic Acid Formation and FTIR Fingerprint of Probiotic Bacteria during Fermentation Processes. Not. Bot. Horti Agrobot. Cluj Napoca 2010, 38, 109–113. [Google Scholar]
- Yin, M.; Chen, L.; Chen, M.; Yuan, Y.; Liu, F.; Zhong, F. Encapsulation of Lactobacillus rhamnosus GG in double emulsions: Role of prebiotics in improving probiotics survival during spray drying and storage. Food Hydrocoll. 2024, 151, 109792. [Google Scholar] [CrossRef]
- Jurić, S.; Šegota, S.; Vinceković, M. Influence of surface morphology and structure of alginate microparticles on the bioactive agents release behavior. Carbohydr. Polym. 2019, 218, 234–242. [Google Scholar] [CrossRef]
- Mackie, A.; Mulet-Cabero, A.-I.; Torcello-Gómez, A. Simulating human digestion: Developing our knowledge to create healthier and more sustainable foods. Food Funct. 2020, 11, 9397–9431. [Google Scholar] [CrossRef]
Encapsulated Active Agent | EE1, % | EE2, % | EE3, % | Average Value | Standard Deviation | Mean Square Deviation |
---|---|---|---|---|---|---|
BB | 80.0 | 89.0 | 80.0 | 83.0 | 5.20 | 4.24 |
SE | 89.6 | 88.09 | 89.0 | 89.2 | 0.38 | 0.31 |
BB + SE | 90.0 | 92.0 | 92.0 | 91.3 | 1.15 | 0.94 |
Encapsulated Active Agent | Sw1, % | Sw2, % | Sw3, % | Average Value | Standard Deviation | Mean Square Deviation |
---|---|---|---|---|---|---|
BB | 76.9 | 80.0 | 80.0 | 79.0 | 1.78 | 1.45 |
SE | 76.9 | 71.4 | 71.4 | 73.3 | 3.18 | 2.59 |
BB + SE | 53.9 | 55.5 | 50.0 | 53.1 | 2.82 | 2.30 |
Section of GIT | pH | k | α |
---|---|---|---|
Stomach | 1–3 | 0.5 ± 0.1 | 0.15 ± 0.0361 |
Small intestine | 6–7 | 0.3 ± 0.1 | 0.1 ± 0.0361 |
Colon intestine | 6–7.5 | 0.4 ± 0.1 | 0.08 ± 0.0361 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madybekova, G.; Turkeyeva, E.; Mutaliyeva, B.; Osmanova, D.; Aidarova, S.; Miller, R.; Sharipova, A.; Issayeva, A. Study of Probiotic Bacteria Encapsulation for Potential Application in Enrichment of Fermented Beverage. Colloids Interfaces 2024, 8, 51. https://doi.org/10.3390/colloids8050051
Madybekova G, Turkeyeva E, Mutaliyeva B, Osmanova D, Aidarova S, Miller R, Sharipova A, Issayeva A. Study of Probiotic Bacteria Encapsulation for Potential Application in Enrichment of Fermented Beverage. Colloids and Interfaces. 2024; 8(5):51. https://doi.org/10.3390/colloids8050051
Chicago/Turabian StyleMadybekova, Galiya, Elmira Turkeyeva, Botagoz Mutaliyeva, Dinara Osmanova, Saule Aidarova, Reinhard Miller, Altynai Sharipova, and Assem Issayeva. 2024. "Study of Probiotic Bacteria Encapsulation for Potential Application in Enrichment of Fermented Beverage" Colloids and Interfaces 8, no. 5: 51. https://doi.org/10.3390/colloids8050051
APA StyleMadybekova, G., Turkeyeva, E., Mutaliyeva, B., Osmanova, D., Aidarova, S., Miller, R., Sharipova, A., & Issayeva, A. (2024). Study of Probiotic Bacteria Encapsulation for Potential Application in Enrichment of Fermented Beverage. Colloids and Interfaces, 8(5), 51. https://doi.org/10.3390/colloids8050051