The Use of Soy and Egg Phosphatidylcholines Modified with Caffeic Acid Enhances the Oxidative Stability of High-Fat (70%) Fish Oil-in-Water Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Emulsion Production
2.2.2. Physical Stability of Emulsions
Creaming Index
Droplet Size
Zeta Potential
Apparent Viscosity
2.2.3. Oxidative Stability of Emulsions
Primary Oxidation Products—Peroxide Value
Tocopherol Content
Secondary Oxidation Products—Volatile Compounds
Fluorescence Microscopy
2.2.4. Statistical Analysis
3. Results and Discussion
3.1. Physical Stability of Emulsions
Emulsion Code | Creaming Index (%) | D[4,3] (μm) | Zeta Potential (mV) | Apparent Viscosity (Pa·s) at 20 s−1 | |||
---|---|---|---|---|---|---|---|
Day 1 | Day 12 | Day 1 | Day 12 | Day 2 | Day 1 | Day 12 | |
1-CAS | 0 | 0 | 8.56 ± 0.00 a | 7.54 ± 0.45 a | −49.8 ± 2.9 a | 2.66 ± 0.13 e | 2.97 ± 0.05 h,* |
2-CPC | 0 | 2 | 17.93 ± 0.09 e | 17.93 ± 0.73 e | −41.2 ± 4.0 b | 0.94 ± 0.01 d | 0.75 ± 0.01 f |
3-SPC_L | 0 | 2 | 15.81 ± 0.03 d | 15.31 ± 0.01 d | −48.3 ± 2.3 a | 0.90 ± 0.03 d | 0.83 ± 0.02 g |
4-SPC_M | 0 | 5 | 13.32 ± 0.18 c | 13.04 ± 0.68 c | −48.3 ± 1.6 a | 0.76 ± 0.01 c | 0.61 ± 0.00 d |
5-SPC_H | 1 | 7 | 11.91 ± 0.02 b | 11.32 ± 0.28 b | −46.4 ± 3.7 ab | 0.53 ± 0.03 b | 0.40 ± 0.00 b |
6-EPC_L | 0 | 2 | 16.48 ± 0.24 d | 16.55 ± 0.01 d | −46.7 ± 2.2 ab | 0.89 ± 0.02 d | 0.84 ± 0.00 g |
7-EPC_M | 0 | 3 | 12.67 ± 0.02 bc | 12.96 ± 0.01 c,* | −49.8 ± 1.4 a | 0.87 ± 0.02 d | 0.71 ± 0.00 e |
8-EPC_H | 0 | 4 | 11.86 ± 0.20 b | 11.59 ± 0.50 b | −49.5 ± 5.0 a | 0.79 ± 0.03 c | 0.54 ± 0.00 c |
9-CPC_L | 2 | 6 | 17.02 ± 0.39 de | 16.48 ± 1.15d | −46.5 ± 3.4 ab | 0.76 ± 0.01 c | 0.76 ± 0.02 f |
10-CPC_H | 6 | 14 | 22.83 ± 2.31 f | 27.77 ± 1.79 f,* | −46.8 ± 5.4 ab | 0.34 ± 0.01 a | 0.23 ± 0.00 a |
3.2. Oxidative Stability of Emulsions
3.2.1. Formation of Primary Oxidation Products
3.2.2. Consumption of Tocopherols
3.2.3. Development of Volatile Secondary Oxidation Products
3.2.4. Propagation of Oxidation Using Fluorescence Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calder, P.C. Health Benefits of Omega-3 Fatty Acids. In Omega-3 Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 25–53. [Google Scholar]
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and Functional Effects of Plant-Derived Omega-3 Fatty Acids in Humans. Prog. Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef] [PubMed]
- Feizollahi, E.; Hadian, Z.; Honarvar, Z. Food Fortification with Omega-3 Fatty Acids; Microencapsulation as an Addition Method. Curr. Nutr. Food Sci. 2018, 14, 90–103. [Google Scholar] [CrossRef]
- Panse, M.L.; Phalke, S.D. Fortification of Food with Omega-3 Fatty Acids. In Omega-3 Fatty Acids; Springer International Publishing: Cham, Switzerland, 2016; pp. 89–100. [Google Scholar]
- Jacobsen, C.; García-Moreno, P.J.; Yesiltas, B.; Sørensen, A.-D.M. Lipid Oxidation and Traditional Methods for Evaluation. In Omega-3 Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 183–200. [Google Scholar]
- Frankel, E.N. Lipid Oxidation; Woodhead Publishing Limited: Shaston, UK, 2005; ISBN 978-0-95319-498-8. [Google Scholar]
- Lane, K.E.; Zhou, Q.; Robinson, S.; Li, W. The Composition and Oxidative Stability of Vegetarian Omega-3 Algal Oil Nanoemulsions Suitable for Functional Food Enrichment. J. Sci. Food Agric. 2020, 100, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Yesiltas, B.; García-Moreno, P.J.; Sørensen, A.-D.M.; Soria Caindec, A.M.; Hyldig, G.; Anankanbil, S.; Guo, Z.; Jacobsen, C. Enrichment of Mayonnaise with a High Fat Fish Oil-in-Water Emulsion Stabilized with Modified DATEM C14 Enhances Oxidative Stability. Food Chem. 2021, 341, 128141. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Wang, A. Novel Pickering High Internal Phase Emulsion Stabilized by Food Waste-Hen Egg Chalaza. Foods 2021, 10, 599. [Google Scholar] [CrossRef] [PubMed]
- Yesiltas, B.; García-Moreno, P.J.; Moltke Sørensen, A.-D.; Jacobsen, C. High Fat (50%) Oil-in-Water Emulsions as Omega-3 Delivery Systems. In Omega-3 Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 255–273. [Google Scholar]
- Berton-Carabin, C.C.; Ropers, M.-H.; Genot, C. Lipid Oxidation in Oil-in-Water Emulsions: Involvement of the Interfacial Layer. Compr. Rev. Food Sci. Food Saf. 2014, 13, 945–977. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E. Interfacial Antioxidants: A Review of Natural and Synthetic Emulsifiers and Coemulsifiers That Can Inhibit Lipid Oxidation. J. Agric. Food Chem. 2018, 66, 20–35. [Google Scholar] [CrossRef]
- Laguerre, M.; López Giraldo, L.J.; Lecomte, J.; Figueroa-Espinoza, M.-C.; Baréa, B.; Weiss, J.; Decker, E.A.; Villeneuve, P. Chain Length Affects Antioxidant Properties of Chlorogenate Esters in Emulsion: The Cutoff Theory Behind the Polar Paradox. J. Agric. Food Chem. 2009, 57, 11335–11342. [Google Scholar] [CrossRef]
- García-Moreno, P.J.; Horn, A.F.; Jacobsen, C. Influence of Casein–Phospholipid Combinations as Emulsifier on the Physical and Oxidative Stability of Fish Oil-in-Water Emulsions. J. Agric. Food Chem. 2014, 62, 1142–1152. [Google Scholar] [CrossRef]
- Gu, L.; Peng, N.; Chang, C.; McClements, D.J.; Su, Y.; Yang, Y. Fabrication of Surface-Active Antioxidant Food Biopolymers: Conjugation of Catechin Polymers to Egg White Proteins. Food Biophys. 2017, 12, 198–210. [Google Scholar] [CrossRef]
- Gong, T.; Tian, D.; Hu, C.Y.; Guo, Y.R.; Meng, Y.H. Improving Antioxidant Ability of Functional Emulsifiers by Conjugating Polyphenols to Sodium Caseinate. LWT 2022, 154, 112668. [Google Scholar] [CrossRef]
- Horn, A.F.; Nielsen, N.S.; Andersen, U.; Søgaard, L.H.; Horsewell, A.; Jacobsen, C. Oxidative Stability of 70% Fish Oil-in-water Emulsions: Impact of Emulsifiers and PH. Eur. J. Lipid Sci. Technol. 2011, 113, 1243–1257. [Google Scholar] [CrossRef]
- Yesiltas, B.; Sørensen, A.-D.M.; García-Moreno, P.J.; Anankanbil, S.; Guo, Z.; Jacobsen, C. Modified Phosphatidylcholine with Different Alkyl Chain Length and Covalently Attached Caffeic Acid Affects the Physical and Oxidative Stability of Omega-3 Delivery 70% Oil-in-Water Emulsions. Food Chem. 2019, 289, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Yesiltas, B.; García-Moreno, P.J.; Sørensen, A.-D.M.; Anankanbil, S.; Guo, Z.; Jacobsen, C. Effects of Modified DATEMs with Different Alkyl Chain Lengths on Improving Oxidative and Physical Stability of 70% Fish Oil-in-Water Emulsions. J. Agric. Food Chem. 2018, 66, 12512–12520. [Google Scholar] [CrossRef] [PubMed]
- Berton-Carabin, C.C.; Sagis, L.; Schroën, K. Formation, Structure, and Functionality of Interfacial Layers in Food Emulsions. Annu. Rev. Food Sci. Technol. 2018, 9, 551–587. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Dalgleish, D.G. Comparison of the Effects of Three Different Phosphatidylcholines on Casein-Stabilized Oil-in-Water Emulsions. J. Am. Oil Chem. Soc. 1996, 73, 437–442. [Google Scholar] [CrossRef]
- Anankanbil, S.; Pérez, B.; Banerjee, C.; Guo, Z. New Phenophospholipids Equipped with Multi-Functionalities: Regiospecific Synthesis and Characterization. J. Colloid. Interface Sci. 2018, 523, 169–178. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Shantha, N.C.; Decker, E.A. Rapid, Sensitive, Iron-Based Spectrophotometric Methods for Determination of Peroxide Values of Food Lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef]
- American Oil Chemists’ Society. Determination of Tocopherols and Tocotrienols in Vegetable Oils and Fats by HPLC. In AOCS Official Method Ce 8-89; American Oil Chemists’ Society: Champaign, IL, USA, 1998. [Google Scholar]
- Yesiltas, B.; Sørensen, A.-D.M.; García-Moreno, P.J.; Anankanbil, S.; Guo, Z.; Jacobsen, C. Combination of Sodium Caseinate and Succinylated Alginate Improved Stability of High Fat Fish Oil-in-Water Emulsions. Food Chem. 2018, 255, 290–299. [Google Scholar] [CrossRef]
- Banerjee, C.; Breitenbach, T.; Ogilby, P.R. Spatially Resolved Experiments to Monitor the Singlet Oxygen Initiated Oxidation of Lipid Droplets in Emulsions. ChemPhotoChem 2018, 2, 586–595. [Google Scholar] [CrossRef]
- Banerjee, C.; Westberg, M.; Breitenbach, T.; Bregnhøj, M.; Ogilby, P.R. Monitoring Interfacial Lipid Oxidation in Oil-in-Water Emulsions Using Spatially Resolved Optical Techniques. Anal. Chem. 2017, 89, 6239–6247. [Google Scholar] [CrossRef] [PubMed]
- Richards, A.; Golding, M.; Wijesundera, C.; Lundin, L. The Influence of Secondary Emulsifiers on Lipid Oxidation within Sodium Caseinate-Stabilized Oil-in-Water Emulsions. J. Am. Oil Chem. Soc. 2011, 88, 65–73. [Google Scholar] [CrossRef]
- Pal, R. Effect of Droplet Size on the Rheology of Emulsions. AIChE J. 1996, 42, 3181–3190. [Google Scholar] [CrossRef]
- Asano, Y.; Sotoyama, K. Viscosity Change in Oil/Water Food Emulsions Prepared Using a Membrane Emulsification System. Food Chem. 1999, 66, 327–331. [Google Scholar] [CrossRef]
- Samdani, G.K.; McClements, D.J.; Decker, E.A. Impact of Phospholipids and Tocopherols on the Oxidative Stability of Soybean Oil-in-Water Emulsions. J. Agric. Food Chem. 2018, 66, 3939–3948. [Google Scholar] [CrossRef] [PubMed]
- Karahadian, C.; Lindsay, R.C. Action of Tocopherol-Type Compounds in Directing Reactions Forming Flavor Compounds in Autoxidizing Fish Oils. J. Am. Oil Chem. Soc. 1989, 66, 1302–1308. [Google Scholar] [CrossRef]
- Raudsepp, P.; Brüggemann, D.A.; Andersen, M.L. Evidence for Transfer of Radicals between Oil-in-Water Emulsion Droplets as Detected by the Probe (E,E)-3,5-Bis(4-Phenyl-1,3-Butadienyl)-4,4-Difluoro-4-Bora-3a,4a-Diaza-s-Indacene, BODIPY665/676. J. Agric. Food Chem. 2014, 62, 12428–12435. [Google Scholar] [CrossRef]
- Raudsepp, P.; Brüggemann, D.A.; Knudsen, J.C.; Andersen, M.L. Localized Lipid Autoxidation Initiated by Two-Photon Irradiation within Single Oil Droplets in Oil-in-Water Emulsions. Food Chem. 2016, 199, 760–767. [Google Scholar] [CrossRef]
- Laguerre, M.; Bily, A.; Roller, M.; Birtić, S. Mass Transport Phenomena in Lipid Oxidation and Antioxidation. Annu. Rev. Food Sci. Technol. 2017, 8, 391–411. [Google Scholar] [CrossRef]
Emulsion Code 1 | Percentage of the EPC/SPC of Total PC | Theoretical Caffeic Acid Concentration in ppm 2 |
---|---|---|
1-CAS | - | - |
2-CPC | - | - |
3-SPC_L | 10% | 360 |
4-SPC_M | 30% | 1080 |
5-SPC_H | 60% | 2160 |
6-EPC_L | 10% | 360 |
7-EPC_M | 30% | 1080 |
8-EPC_H | 60% | 2160 |
9-CPC_L | - | 360 |
10-CPC_H | - | 2160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yesiltas, B.; García-Moreno, P.J.; Sørensen, A.-D.M.; Banerjee, C.; Anankanbil, S.; Guo, Z.; Ogilby, P.R.; Jacobsen, C. The Use of Soy and Egg Phosphatidylcholines Modified with Caffeic Acid Enhances the Oxidative Stability of High-Fat (70%) Fish Oil-in-Water Emulsions. Colloids Interfaces 2023, 7, 60. https://doi.org/10.3390/colloids7030060
Yesiltas B, García-Moreno PJ, Sørensen A-DM, Banerjee C, Anankanbil S, Guo Z, Ogilby PR, Jacobsen C. The Use of Soy and Egg Phosphatidylcholines Modified with Caffeic Acid Enhances the Oxidative Stability of High-Fat (70%) Fish Oil-in-Water Emulsions. Colloids and Interfaces. 2023; 7(3):60. https://doi.org/10.3390/colloids7030060
Chicago/Turabian StyleYesiltas, Betül, Pedro J. García-Moreno, Ann-Dorit M. Sørensen, Chiranjib Banerjee, Sampson Anankanbil, Zheng Guo, Peter R. Ogilby, and Charlotte Jacobsen. 2023. "The Use of Soy and Egg Phosphatidylcholines Modified with Caffeic Acid Enhances the Oxidative Stability of High-Fat (70%) Fish Oil-in-Water Emulsions" Colloids and Interfaces 7, no. 3: 60. https://doi.org/10.3390/colloids7030060
APA StyleYesiltas, B., García-Moreno, P. J., Sørensen, A. -D. M., Banerjee, C., Anankanbil, S., Guo, Z., Ogilby, P. R., & Jacobsen, C. (2023). The Use of Soy and Egg Phosphatidylcholines Modified with Caffeic Acid Enhances the Oxidative Stability of High-Fat (70%) Fish Oil-in-Water Emulsions. Colloids and Interfaces, 7(3), 60. https://doi.org/10.3390/colloids7030060