Efficient Adsorption Removal of an Anionic Azo Dye by Lignocellulosic Waste Material and Sludge Recycling into Combustible Briquettes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Adsorption Experiments
2.3. Biochar Production from Pyrolysis of Biomass
2.4. Densification of Biomass into Briquettes
2.5. Characterization Methods
3. Results and Discussion
3.1. Characterization of AS
3.1.1. FTIR Analysis
3.1.2. XRD Analysis
3.1.3. SEM Analysis
3.1.4. The pH at the Zero-Charge Point
3.2. Adsorption Experiments
3.2.1. Effect of Adsorbent Mass
3.2.2. Effect of Temperature
3.2.3. Effect of Solution pH
3.2.4. Effect of AS Particle Diameter
3.2.5. Kinetic Study
3.2.6. Adsorption Isotherm
3.2.7. Adsorption Mechanism
3.3. Preparation of Combustible Briquettes by Recycling AS Sludge
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, Y.; Xu, G.; Li, L.; Xu, Y.; Zhang, Y.; Liu, C.; Zhang, Z. Fabrication of Ceramsite Adsorbent from Industrial Wastes for the Removal of Phosphorus from Aqueous Solutions. J. Chem. 2020, 2020, 8036961. [Google Scholar] [CrossRef]
- Tiadi, N.; Dash, R.R.; Mohanty, C.R.; Patel, A.M. Comparative Studies of Adsorption of Chromium (VI) Ions onto Different Industrial Wastes. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020021. [Google Scholar] [CrossRef]
- Savci, S.; Karaman, Z.; Yalvac, M. Anionic and Cationic Textile Dyes Adsorption by Industrial Wastes: Pistachio Hull. Fresenius Environ. Bull. 2019, 28, 7340–7351. [Google Scholar]
- Ayati, A.; Shahrak, M.N.; Tanhaei, B.; Sillanpää, M. Emerging Adsorptive Removal of Azo Dye by Metal–Organic Frameworks. Chemosphere 2016, 160, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.; Arrieta, E.; Vicente, M.Á.; Korili, S.A. Application of Industrial Wastes from Chemically Treated Aluminum Saline Slags as Adsorbents. ACS Omega 2018, 3, 18275–18284. [Google Scholar] [CrossRef]
- Dias, Y.N.; Souza, E.S.; da Costa, H.S.C.; Melo, L.C.A.; Penido, E.S.; do Amarante, C.B.; Teixeira, O.M.M.; Fernandes, A.R. Biochar Produced from Amazonian Agro-Industrial Wastes: Properties and Adsorbent Potential of Cd 2+ and Cu 2+. Biochar 2019, 1, 389–400. [Google Scholar] [CrossRef] [Green Version]
- de Andrade, J.R.; Oliveira, M.F.; da Silva, M.G.; Vieira, M.G. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind. Eng. Chem. Res. 2018, 57, 3103–3127. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Q.; Ji, G.; Li, A. Degradation of Antibiotic Pollutants by Persulfate Activated with Various Carbon Materials. Chem. Eng. J. 2022, 429, 132387. [Google Scholar] [CrossRef]
- Akram, M.; Xu, X.; Gao, B.; Wang, S.; Khan, R.; Yue, Q.; Duan, P.; Dan, H.; Pan, J. Highly Efficient Removal of Phosphate from Aqueous Media by Pomegranate Peel Co-Doping with Ferric Chloride and Lanthanum Hydroxide Nanoparticles. J. Clean. Prod. 2021, 292, 125311. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, X.; Wang, X.; Lai, S.; Sun, Y.; Yang, D. Recent Advances in Metal-Organic Frameworks for the Removal of Heavy Metal Oxoanions from Water. Chem. Eng. J. 2021, 407, 127221. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, J.; Wu, J.; Dai, G. Isotherm, Thermodynamic, Kinetics and Adsorption Mechanism Studies of Methyl Orange by Surfactant Modified Silkworm Exuviae. J. Hazard. Mater. 2011, 192, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Belhachemi, M.; Belala, Z.; Lahcene, D.; Addoun, F. Adsorption of Phenol and Dye from Aqueous Solution Using Chemically Modified Date Pits Activated Carbons. Desalination Water Treat. 2009, 7, 182–190. [Google Scholar] [CrossRef]
- Panumati, S.; Chudecha, K.; Vankhaew, P.; Choolert, V.; Chuenchom, L.; Innajitara, W.; Sirichote, O. Adsorption of Phenol from Diluted Aqueous Solutions by Activated Carbons Obtained from Bagasse, Oil Palm Shell and Pericarp of Rubber Fruit. Songklanakarin J. Sci. Technol. 2008, 30, 185–189. [Google Scholar]
- Vazquez, G.; Gonzalez-Alvarez, J.; Garcia, A.I.; Freire, M.S.; Antorrena, G. Adsorption of Phenol on Formaldehyde-Pretreated Pinus Pinaster Bark: Equilibrium and Kinetics. Bioresour. Technol. 2007, 98, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Tseng, R.-L.; Wu, K.-T.; Wu, F.-C.; Juang, R.-S. Kinetic Studies on the Adsorption of Phenol, 4-Chlorophenol, and 2,4-Dichlorophenol from Water Using Activated Carbons. J. Environ. Manag. 2010, 91, 2208–2214. [Google Scholar] [CrossRef]
- Moura, M.N.; Martín, M.J.; Burguillo, F.J. A Comparative Study of the Adsorption of Humic Acid, Fulvic Acid and Phenol onto Bacillus Subtilis and Activated Sludge. J. Hazard. Mater. 2007, 149, 42–48. [Google Scholar] [CrossRef]
- Li, J.-M.; Meng, X.-G.; Hu, C.-W.; Du, J. Adsorption of Phenol, p-Chlorophenol and p-Nitrophenol onto Functional Chitosan. Bioresour. Technol. 2009, 100, 1168–1173. [Google Scholar] [CrossRef]
- Milhome, M.A.L.; Keukeleire, D.D.; Ribeiro, J.P.; Nascimento, R.F.; Carvalho, T.V.; Queiroz, D.C. Removal of Phenol and Conventional Pollutants from Aqueous Effluent by Chitosan and Chitin. Quím. Nova 2009, 32, 2122–2127. [Google Scholar] [CrossRef]
- Dursun, A.Y.; Kalayci, C.S. Equilibrium, Kinetic and Thermodynamic Studies on the Adsorption of Phenol onto Chitin. J. Hazard. Mater. 2005, 123, 151–157. [Google Scholar] [CrossRef]
- Ala’a, H.; Ibrahim, K.A.; Albadarin, A.B.; Ali-Khashman, O.; Walker, G.M.; Ahmad, M.N. Remediation of Phenol-Contaminated Water by Adsorption Using Poly (Methyl Methacrylate)(PMMA). Chem. Eng. J. 2011, 168, 691–699. [Google Scholar]
- Pan, B.; Pan, B.; Zhang, W.; Zhang, Q.; Zhang, Q.; Zheng, S. Adsorptive Removal of Phenol from Aqueous Phase by Using a Porous Acrylic Ester Polymer. J. Hazard. Mater. 2008, 157, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Dali-Youcef, Z.; Bouabdasselem, H.; Bettahar, N. Élimination Des Composés Organiques Par Des Argiles Locales. Comptes Rendus Chim. 2006, 9, 1295–1300. [Google Scholar] [CrossRef]
- Sprynskyy, M.; Ligor, T.; Lebedynets, M.; Buszewski, B. Kinetic and Equilibrium Studies of Phenol Adsorption by Natural and Modified Forms of the Clinoptilolite. J. Hazard. Mater. 2009, 169, 847–854. [Google Scholar] [CrossRef]
- Tao, Y.F.; Lin, W.G.; Gao, L.; Yang, J.; Zhou, Y.; Yang, J.Y.; Wei, F.; Wang, Y.; Zhu, J.H. Low-Cost and Effective Phenol and Basic Dyes Trapper Derived from the Porous Silica Coated with Hydrotalcite Gel. J. Colloid Interface Sci. 2011, 358, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Mohan, D.; Rajput, S.; Singh, V.K.; Steele, P.H.; Pittman Jr, C.U. Modeling and Evaluation of Chromium Remediation from Water Using Low Cost Bio-Char, a Green Adsorbent. J. Hazard. Mater. 2011, 188, 319–333. [Google Scholar] [CrossRef]
- Malkoc, E.; Nuhoglu, Y. Determination of Kinetic and Equilibrium Parameters of the Batch Adsorption of Cr (VI) onto Waste Acorn of Quercus Ithaburensis. Chem. Eng. Process.-Process Intensif. 2007, 46, 1020–1029. [Google Scholar] [CrossRef]
- Ajouyed, O.; Hurel, C.; Ammari, M.; Allal, L.B.; Marmier, N. Sorption of Cr (VI) onto Natural Iron and Aluminum (Oxy) Hydroxides: Effects of PH, Ionic Strength and Initial Concentration. J. Hazard. Mater. 2010, 174, 616–622. [Google Scholar] [CrossRef]
- Oliveira, D.Q.; Gonçalves, M.; Oliveira, L.C.; Guilherme, L.R. Removal of As (V) and Cr (VI) from Aqueous Solutions Using Solid Waste from Leather Industry. J. Hazard. Mater. 2008, 151, 280–284. [Google Scholar] [CrossRef]
- Louhab, K.; Addad, J.; Barr, S.; Goma, B. Thermodynamic of Chromium Sorption on Biomass Fungi from Aqueous Solution. J. Appl. Sci. 2006, 6, 2486–2490. [Google Scholar]
- Hu, B.; Luo, H.; Chen, H.; Dong, T. Adsorption of Chromate and Para-Nitrochlorobenzene on Inorganic–Organic Montmorillonite. Appl. Clay Sci. 2011, 51, 198–201. [Google Scholar] [CrossRef]
- Neagu, V.; Mikhalovsky, S. Removal of Hexavalent Chromium by New Quaternized Crosslinked Poly (4-Vinylpyridines). J. Hazard. Mater. 2010, 183, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Ebringerová, A.; Hromádková, Z.; Košťálová, Z.; Sasinková, V. Chemical valorization of agricultural by-products: Isolation and characterization of xylan-based antioxidants from almond shell biomass. BioResources 2008, 3, 60–70. [Google Scholar]
- Yüksel, Ş.; Orhan, R. The Removal of Cr(VI) from Aqueous Solution by Activated Carbon Prepared from Apricot, Peach Stone and Almond Shell Mixture in a Fixed-Bed Column. Arab. J. Sci. Eng. 2019, 44, 5345–5357. [Google Scholar] [CrossRef]
- Shu, Y.; Ji, B.; Cui, B.; Shi, Y.; Wang, J.; Hu, M.; Luo, S.; Guo, D. Almond Shell-Derived, Biochar-Supported, Nano-Zero-Valent Iron Composite for Aqueous Hexavalent Chromium Removal: Performance and Mechanisms. Nanomaterials 2020, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Yahya, M.D.; Abubakar, H.; Obayomi, K.S.; Iyaka, Y.A.; Suleiman, B. Simultaneous and Continuous Biosorption of Cr and Cu (II) Ions from Industrial Tannery Effluent Using Almond Shell in a Fixed Bed Column. Results Eng. 2020, 6, 100113. [Google Scholar] [CrossRef]
- Abdolrahimi, N.; Tadjarodi, A. Adsorption of Rhodamine-B from Aqueous Solution by Activated Carbon from Almond Shell. Proceedings 2019, 41, 51. [Google Scholar] [CrossRef] [Green Version]
- Zbair, M.; Anfar, Z.; Ait Ahsaine, H.; El Alem, N.; Ezahri, M. Acridine Orange Adsorption by Zinc Oxide/Almond Shell Activated Carbon Composite: Operational Factors, Mechanism and Performance Optimization Using Central Composite Design and Surface Modeling. J. Environ. Manag. 2018, 206, 383–397. [Google Scholar] [CrossRef]
- Rai, M.K.; Giri, B.S.; Nath, Y.; Bajaj, H.; Soni, S.; Singh, R.P.; Singh, R.S.; Rai, B.N. Adsorption of Hexavalent Chromium from Aqueous Solution by Activated Carbon Prepared from Almond Shell: Kinetics, Equilibrium and Thermodynamics Study. J. Water Supply Res. Technol.-Aqua 2018, 67, 724–737. [Google Scholar] [CrossRef]
- Hsini, A.; Essekri, A.; Aarab, N.; Laabd, M.; Ait Addi, A.; Lakhmiri, R.; Albourine, A. Elaboration of Novel Polyaniline@Almond Shell Biocomposite for Effective Removal of Hexavalent Chromium Ions and Orange G Dye from Aqueous Solutions. Environ. Sci. Pollut. Res. 2020, 27, 15245–15258. [Google Scholar] [CrossRef]
- Ait Ahsaine, H.; Zbair, M.; Anfar, Z.; Naciri, Y.; El haouti, R.; El Alem, N.; Ezahri, M. Cationic Dyes Adsorption onto High Surface Area ‘Almond Shell’ Activated Carbon: Kinetics, Equilibrium Isotherms and Surface Statistical Modeling. Mater. Today Chem. 2018, 8, 121–132. [Google Scholar] [CrossRef]
- Banerjee, M.; Basu, R.K.; Das, S.K. Cu(II) Removal Using Green Adsorbents: Kinetic Modeling and Plant Scale-up Design. Environ. Sci. Pollut. Res. 2019, 26, 11542–11557. [Google Scholar] [CrossRef] [PubMed]
- Yari Moghaddam, N.; Lorestani, B.; Cheraghi, M.; Jamehbozorgi, S. Adsorption of Cd and Ni from Water by Graphene Oxide and Graphene Oxide–Almond Shell Composite. Water Environ. Res. 2019, 91, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Homem, V.; Alves, A.; Santos, L. Amoxicillin Removal from Aqueous Matrices by Sorption with Almond Shell Ashes. Int. J. Environ. Anal. Chem. 2010, 90, 1063–1084. [Google Scholar] [CrossRef]
- Ertaş, M.; Alma, M.H. Pyrolysis of Laurel (Laurus Nobilis L.) Extraction Residues in a Fixed-Bed Reactor: Characterization of Bio-Oil and Bio-Char. J. Anal. Appl. Pyrolysis 2010, 88, 22–29. [Google Scholar] [CrossRef]
- Lepetit, A. Élaboration de Matériaux Composites à Base de Filaments de Cellulose et de Polyéthylène. PhD Thesis, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada, 2017. [Google Scholar]
- Annab, H.; Fiol, N.; Villaescusa, I.; Essamri, A. A Proposal for the Sustainable Treatment and Valorisation of Olive Mill Wastes. J. Environ. Chem. Eng. 2019, 7, 102803. [Google Scholar] [CrossRef]
- Bautista-Toledo, I.; Ferro-García, M.A.; Rivera-Utrilla, J.; Moreno-Castilla, C.; Vegas Fernández, F.J. Bisphenol A Removal from Water by Activated Carbon. Effects of Carbon Characteristics and Solution Chemistry. Environ. Sci. Technol. 2005, 39, 6246–6250. [Google Scholar] [CrossRef]
- Chaouki, Z.; Hadri, M.; Nawdali, M.; Benzina, M.; Zaitan, H. Treatment of a Landfill Leachate from Casablanca City by a Coagulation-Flocculation and Adsorption Process Using a Palm Bark Powder (PBP). Sci. Afr. 2021, 12, e00721. [Google Scholar] [CrossRef]
- Karaoğlu, M.H.; Doğan, M.; Alkan, M. Kinetic Analysis of Reactive Blue 221 Adsorption on Kaolinite. Desalination 2010, 256, 154–165. [Google Scholar] [CrossRef]
- Belaid, K.; Kacha, S. Étude Cinétique et Thermodynamique de l’adsorption d’un Colorant Basique Sur La Sciure de Bois. Rev. Sci. L’eauJournal Water Sci. 2011, 24, 131–144. [Google Scholar]
- Guechi, E.-K.; Hamdaoui, O. Sorption of Malachite Green from Aqueous Solution by Potato Peel: Kinetics and Equilibrium Modeling Using Non-Linear Analysis Method. Arab. J. Chem. 2016, 9, S416–S424. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.-S.; McKay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Kayranli, B.; Gok, O.; Yilmaz, T.; Gok, G.; Celebi, H.; Seckin, I.Y.; Mesutoglu, O.C. Low-Cost Organic Adsorbent Usage for Removing Ni2+ and Pb2+ from Aqueous Solution and Adsorption Mechanisms. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Zhang, Z.; O’Hara, I.M.; Kent, G.A.; Doherty, W.O. Comparative Study on Adsorption of Two Cationic Dyes by Milled Sugarcane Bagasse. Ind. Crops Prod. 2013, 42, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Soto, M.L.; Moure, A.; Domínguez, H.; Parajó, J.C. Recovery, Concentration and Purification of Phenolic Compounds by Adsorption: A Review. J. Food Eng. 2011, 105, 1–27. [Google Scholar] [CrossRef]
- Masoumi, H.; Ghaemi, A.; Ghanadzadeh Gilani, H.; Ramazanipour Penchah, H. Benzene-Based Hypercross-Linked Polymers as a Highly Efficient Adsorbent for Cadmium Removal from Aqueous Solution. Int. J. Environ. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Ayanda, O.S.; Amodu, O.S.; Adubiaro, H.; Olutona, G.O.; Ebenezer, O.T.; Nelana, S.M.; Naidoo, E.B. Effectiveness of Termite Hill as an Economic Adsorbent for the Adsorption of Alizarin Red Dye. J. Water Reuse Desalination 2018, 9, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Dall’Agnol, P.; Libardi, N.; da Silva, E.C.; da Costa, R.H.R. Biosorption of Phosphorus Using Alginate-Like Exopolymers: Investigation of Removal Mechanism, Kinetic and Thermodynamic Properties. J. Polym. Environ. 2022, 30, 695–706. [Google Scholar] [CrossRef]
- Parshetti, G.K.; Telke, A.A.; Kalyani, D.C.; Govindwar, S.P. Decolorization and Detoxification of Sulfonated Azo Dye Methyl Orange by Kocuria Rosea MTCC 1532. J. Hazard. Mater. 2010, 176, 503–509. [Google Scholar] [CrossRef]
- Imamura, K.; Ikeda, E.; Nagayasu, T.; Sakiyama, T.; Nakanishi, K. Adsorption Behavior of Methylene Blue and Its Congeners on a Stainless Steel Surface. J. Colloid Interface Sci. 2002, 245, 50–57. [Google Scholar] [CrossRef]
- Li, Z.; Chang, P.-H.; Jiang, W.-T.; Jean, J.-S.; Hong, H. Mechanism of Methylene Blue Removal from Water by Swelling Clays. Chem. Eng. J. 2011, 168, 1193–1200. [Google Scholar] [CrossRef]
- Ovchinnikov, O.V.; Chernykh, S.V.; Smirnov, M.S.; Alpatova, D.V.; Vorob’eva, R.P.; Latyshev, A.N.; Evlev, A.B.; Utekhin, A.N.; Lukin, A.N. Analysis of Interaction between the Organic Dye Methylene Blue and the Surface of AgCl(I) Microcrystals. J. Appl. Spectrosc. 2007, 74, 809–816. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C. Spectrometric Identification of Organic Compounds. J. Chem. Educ. 1962, 39, 546. [Google Scholar] [CrossRef]
- Khelifi, O.; Mehrez, I.; Younsi, M.; Nacef, M.; Affoune, A.M. Methyl orange adsorption on biosorbent derived from mango seed kernels. LARHYSS J. P-ISSN 1112-3680 E-ISSN 2521-9782 2018, 36, 145–156. [Google Scholar]
- Annadurai, G.; Juang, R.-S.; Lee, D.-J. Use of Cellulose-Based Wastes for Adsorption of Dyes from Aqueous Solutions. J. Hazard. Mater. 2002, 92, 263–274. [Google Scholar] [CrossRef]
- Mittal, A.; Malviya, A.; Kaur, D.; Mittal, J.; Kurup, L. Studies on the Adsorption Kinetics and Isotherms for the Removal and Recovery of Methyl Orange from Wastewaters Using Waste Materials. J. Hazard. Mater. 2007, 148, 229–240. [Google Scholar] [CrossRef]
- Tapan Kumar, S. Adsorption of Methyl Orange onto Chitosan from Aqueous Solution. J. Water Resour. Prot. 2010, 2, 2969. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, H.; Wu, H. Biochar as a Fuel: 1. Properties and Grindability of Biochars Produced from the Pyrolysis of Mallee Wood under Slow-Heating Conditions. Energy Fuels 2009, 23, 4174–4181. [Google Scholar] [CrossRef]
- Obernberger, I.; Thek, G. Physical Characterisation and Chemical Composition of Densified Biomass Fuels with Regard to Their Combustion Behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Blesa, M.J.; Miranda, J.L.; Izquierdo, M.T.; Moliner, R. Curing Temperature Effect on Mechanical Strength of Smokeless Fuel Briquettes Prepared with Molasses☆. Fuel 2003, 82, 943–947. [Google Scholar] [CrossRef]
- Tillman, D.A. Biomass Cofiring: The Technology, the Experience, the Combustion Consequences. Biomass Bioenergy 2000, 19, 365–384. [Google Scholar] [CrossRef]
Model | Equation |
---|---|
Pseudo-first order | |
Pseudo-second order | |
Langmuir | |
Freundlich | |
Coefficient of determination, R2 |
Langmuir Parameters | Value | Freundlich Parameters | Value |
---|---|---|---|
Qmax (mg/g) | 15.6 | nf | 1.07 |
KL | 0.0028 | Kf | 0.051 |
R2 | 0.95 | R2 | 0.85 |
T (K) | ΔG° (J mol−1) | ΔS° (kJ mol−1 K−1) | ΔH° (kJ mol−1) | R2 |
---|---|---|---|---|
303.13 | 5161.27 | 0.094 | 24.792 | 0.995 |
323.13 | 4104.59 | |||
343.13 | 2678.90 | |||
353.13 | 1931.19 |
Adsorbent | pH and Temperature | Kinetic Model | Equilibrium Time (min) | Isotherm Model | Adsorption Capacity (qm)(mg/g) | Reference | |
---|---|---|---|---|---|---|---|
pH | T (°C) | ||||||
Mango seed kernels | 6.8 | 25 | PSO | 40 | Freundlich | 5.71 | [65] |
Banana peel | 5.7 | 30 | The intraparticle diffusion | 24 h | Freundlich | 21 | [66] |
Orange peel | 5.7 | 25 | The intraparticle diffusion | 24 h | Langmuir | 20.5 | [66] |
De-oiled soya | 3 | 25 | PSO | 150 | Langmuir | 16.7 | [67] |
Bottom ash | 3 | 25 | PSO | 4 h | Langmuir | 3.6 | [67] |
Chitosan | 4 | 27 | PSO | 40 | Langmuir | 28.41 | [68] |
AS | 6 | 90 | PSO | 40 | Langmuir | 15.63 | This study |
Sample | Humidity (%) | Volatile Matter (%) | Fixed Carbon (%) | VM/FC |
---|---|---|---|---|
A400 | 3.26 | 28.42 | 63.16 | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kali, A.; Amar, A.; Loulidi, I.; Hadey, C.; Jabri, M.; Alrashdi, A.A.; Lgaz, H.; Sadoq, M.; El-kordy, A.; Boukhlifi, F. Efficient Adsorption Removal of an Anionic Azo Dye by Lignocellulosic Waste Material and Sludge Recycling into Combustible Briquettes. Colloids Interfaces 2022, 6, 22. https://doi.org/10.3390/colloids6020022
Kali A, Amar A, Loulidi I, Hadey C, Jabri M, Alrashdi AA, Lgaz H, Sadoq M, El-kordy A, Boukhlifi F. Efficient Adsorption Removal of an Anionic Azo Dye by Lignocellulosic Waste Material and Sludge Recycling into Combustible Briquettes. Colloids and Interfaces. 2022; 6(2):22. https://doi.org/10.3390/colloids6020022
Chicago/Turabian StyleKali, Abderrahim, Abdelouahed Amar, Ilyasse Loulidi, Chaimaa Hadey, Maria Jabri, Awad A. Alrashdi, Hassane Lgaz, Mohamed Sadoq, Abderrazek El-kordy, and Fatima Boukhlifi. 2022. "Efficient Adsorption Removal of an Anionic Azo Dye by Lignocellulosic Waste Material and Sludge Recycling into Combustible Briquettes" Colloids and Interfaces 6, no. 2: 22. https://doi.org/10.3390/colloids6020022
APA StyleKali, A., Amar, A., Loulidi, I., Hadey, C., Jabri, M., Alrashdi, A. A., Lgaz, H., Sadoq, M., El-kordy, A., & Boukhlifi, F. (2022). Efficient Adsorption Removal of an Anionic Azo Dye by Lignocellulosic Waste Material and Sludge Recycling into Combustible Briquettes. Colloids and Interfaces, 6(2), 22. https://doi.org/10.3390/colloids6020022