Synthesis and Properties of SBA-15 Modified with Non-Noble Metals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- a series of catalysts used to study one reaction at the same conditions,
- one catalyst used to study one reaction at various conditions (temperature, time of equilibration),
- one catalyst used to study multiple reactions,
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations:
BET | Brunauer, Emmett, Teller (isotherm of adsorption) |
CVD | chemical vapor deposition |
DRIFT | diffuse reflectance infrared Fourier transform (spectroscopy) |
DRM | double resonance modulation (in spectroscopy) |
DTA | differential thermal analysis |
DTG | differential thermogravimetry |
EDS | energy dispersive X-ray spectroscopy |
EDXS | energy dispersive X-ray spectroscopy |
EELS | electron energy loss spectroscopy |
FFT | fast Fourier transform |
FTIR | Fourier transform infrared (spectroscopy) |
HR | high resolution (TEM) |
MAS | magic angle spinning (NMR) |
NMR | nuclear magnetic resonance |
SEM | scanning electron microscopy |
SSA | specific surface area |
TEM | transmission electron microscopy |
TG | thermogravimetry |
TGA | thermogravimetric analysis |
TPH | temperature-programmed hydrogenation |
TPD | temperature-programmed desorption |
TPO | temperature-programmed oxidation |
TPR | temperature-programmed reduction |
UV | ultraviolet |
XANES | X-ray absorption near edge structure |
XPS | X-ray photoelectron spectroscopy |
XRD | X-rays diffraction |
XRF | X-ray fluorescence |
References
- Zhang, Z.; Luo, Y.; Guo, Y.; Shi, W.; Wang, W.; Bing, Z.; Zhang, R.; Bao, X.; Wu, S.; Cui, F. Pd and Pt nanoparticles supported on the mesoporous silica molecular sieve SBA-15 with enhanced activity and stability in catalytic bromate reduction. Chem. Eng. J. 2018, 344, 114–123. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, H.; Gu, Z.; Wang, G.; Zuo, Y.; Wang, Y.; Cui, L. Preferential carbon monoxide oxidation on Ag/Al-SBA-15 catalysts: Effect of the Si/Al ratio. Chem. Eng. J. 2015, 269, 94–104. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, H.; Wang, Y.; Liu, N.; Zuo, Y.; Cui, L. Study of catalytic activity at the Ag/Al-SBA-15 catalysts for CO oxidation and selective CO oxidation. Chem. Eng. J. 2016, 283, 1097–1107. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Setiabudi, H.D.; Nanda, S.; Vo, D.V.N. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review. Appl. Catal. A 2018, 559, 57–74. [Google Scholar] [CrossRef]
- Chaudhary, V.; Sharma, S. An overview of ordered mesoporous material SBA-15: Synthesis, functionalization and application in oxidation reactions. J. Porous Mater. 2017, 24, 741–749. [Google Scholar] [CrossRef]
- Usman, M.; Daud, W.M.A.W.; Abbas, H.F. Dry reforming of methane: Influence of process parameters—A review. Renew. Sustain. Energy Rev. 2015, 45, 710–744. [Google Scholar] [CrossRef]
- Ziolek, M.; Sobczak, I. The role of niobium component in heterogeneous catalysts. Catal. Today 2017, 285, 211–225. [Google Scholar] [CrossRef]
- Debecker, D.P.; Hulea, V.P.; Mutin, H. Mesoporous mixed oxide catalysts via non-hydrolytic sol–gel: A review. Appl. Catal. A 2013, 451, 192–206. [Google Scholar] [CrossRef]
- Akbari, A.; Amini, M.; Tarassoli, A.; Eftekhari-Sis, B.; Ghasemian, N.; Jabbari, E. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Struct. Nano-Objects 2018, 14, 19–48. [Google Scholar] [CrossRef]
- Zhou, X.; Cheng, X.; Zhu, Y.; Elzatahry, A.A.; Alghamdi, A.; Deng, Y.; Zhao, D. Ordered porous metal oxide semiconductors for gas sensing, review article. Chin. Chem. Lett. 2018, 29, 405–416. [Google Scholar] [CrossRef]
- Yang, J.H.; Cho, Y.J.; Shin, J.M.; Yim, M.S. Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage. J. Nucl. Mater. 2015, 465, 556–564. [Google Scholar] [CrossRef]
- Bhange, P.; Bhange, D.S.; Pradhan, S.; Ramaswamy, V. Direct synthesis of well-ordered mesoporous Al-SBA-15 and its correlation with the catalytic activity. Appl. Catal. A 2011, 400, 176–184. [Google Scholar] [CrossRef]
- Kosmulski, M.; Mączka, E. Modification of SBA-15 with vapors of aluminum and titanium chlorides. Colloids Surf. A 2017, 535, 61–68. [Google Scholar] [CrossRef]
- Li, J.; Fang, X.; Bian, J.; Guo, Y.; Li, C. Microalgae hydrothermal liquefaction and derived biocrude upgrading with modified SBA-15 catalysts. Bioresour. Technol. 2018, 266, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, Y.; Li, Z.; Chen, X.; Jiang, E. Hydrogen from pyroligneous acid via modified bimetal Al-SBA-15 catalysts. Appl. Catal. A 2017, 547, 75–85. [Google Scholar] [CrossRef]
- Ledesma, B.C.; Martínez, M.L.; Beltramone, A.R. Iridium-supported SBA-15 modified with Ga and Al as a highly active catalyst in the hydrodenitrogenation of quinolone. Catal. Today 2018, in press. [Google Scholar] [CrossRef]
- Calles, J.; Carrero, A.A.; Vizcaíno, A.J.; García-Moreno, L. Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: Effect of alkaline earth promoters on activity and stability. Catal. Today 2014, 227, 198–206. [Google Scholar] [CrossRef]
- Shen, X.L.; Wang, Z.Q.; Wang, Q.Y.; Liu, S.Y.; Wang, G.Y. Synthesis of poly(isosorbide carbonate) via melt polycondensation catalyzed by Ca/SBA-15 solid base. Chin. J. Polym. Sci. 2018, 36, 1027–1035. [Google Scholar] [CrossRef]
- Kosmulski, M.; Mączka, E. Uptake of vapors of Cd at 480–600 C and of Zn at 750–880 C by SBA-15. Microporous Mesoporous Mater. 2017, 246, 114–119. [Google Scholar] [CrossRef]
- Mu, Z.; Li, J.J.; Duan, M.H.; Hao, Z.P.; Qiao, S. Catalytic combustion of benzene on Co/CeO2/SBA-15 and Co/SBA-15 catalysts. Catal. Commun. 2008, 9, 1874–1877. [Google Scholar] [CrossRef]
- Ren, L.H.; Li, H.; Zhang, A.; Lu, H.; Hao, Y.; Li, W.C. Porous silica as supports for controlled fabrication of Au/CeO2/SiO2 catalysts for CO oxidation: Influence of the silica nanostructures. Microporous Mesoporous Mater. 2012, 158, 7–12. [Google Scholar] [CrossRef]
- Mu, Z.; Li, J.J.; Tian, H.; Hao, Z.P.; Qia, S.Z. Synthesis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene. Mater. Res. Bull. 2008, 43, 2599–2606. [Google Scholar] [CrossRef] [Green Version]
- Tsoncheva, T.; Issa, G.; Blasco, T.; Dimitrov, M.; Popova, M.; Hernández, S.; Kovacheva, D.; Atanasova, G.; Nieto, J.M.L. Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica. Appl. Catal. A 2013, 453, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Chu, W.; Zhang, T.; Zhao, X.S. Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. Int. J. Hydrogen Energy 2012, 37, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Ochoa-Hernández, C.; Pizarro, P.; de la Peña O’Shea, V.A.; Coronado, J.M.; Serrano, D.P. Ce-promoted Ni/SBA-15 catalysts for anisole hydrotreating under mild conditions. Appl. Catal. B 2016, 197, 206–213. [Google Scholar] [CrossRef]
- Kaminski, P.; Ziolek, M. Surface and catalytic properties of Ce-, Zr-, Au-, Cu-modified SBA-15. J. Catal. 2014, 312, 249–262. [Google Scholar] [CrossRef]
- Li, D.; Zeng, L.; Li, X.; Wang, X.; Ma, H.; Assabumrungrat, S.; Gong, J. Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Appl. Catal. B 2015, 176–177, 532–541. [Google Scholar] [CrossRef]
- Boubekr, F.; Davidson, A.; Casale, S.; Massiani, P. Ex-nitrate Co/SBA-15 catalysts prepared with calibrated silica grains: Information given by TPR, TEM, SAXS and WAXS. Microporous Mesoporous Mater. 2011, 141, 157–166. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, Y.; Zhao, L.; Zhu, Y. Adsorption synthesized cobalt-containing mesoporous silica SBA-15 as highly active catalysts for epoxidation of styrene with molecular oxygen. Catal. Commun. 2011, 12, 417–420. [Google Scholar] [CrossRef]
- Shukla, P.; Sun, H.; Wang, S.; Ang, H.M.; Tadé, M.O. Co-SBA-15 for heterogeneous oxidation of phenol with sulfate radical for wastewater treatment. Catal. Today 2011, 175, 380–385. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; Carrero, A.; Calles, J.A. Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg. Fuel Process. Technol. 2016, 146, 99–109. [Google Scholar] [CrossRef]
- Jabbour, K.; El Hassan, N.; Casale, S.; Estephane, J.; El Zakhem, H. Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane. Int. J. Hydrogen Energy 2014, 39, 7780–7787. [Google Scholar] [CrossRef]
- Xin, J.; Cui, H.; Cheng, Z.; Zhou, Z. Bimetallic Ni-Co/SBA-15 catalysts prepared by urea co-precipitation for dry reforming of methane. Appl. Catal. A 2018, 554, 95–104. [Google Scholar] [CrossRef]
- El Hassan, N.; Kaydouh, M.N.; Geagea, H.; El Zein, H.; Jabbour, K.; Casale, S.; El Zakhem, H.; Massiani, P. Low temperature dry reforming of methane on rhodium and cobalt based catalysts: Active phase stabilization by confinement in mesoporous SBA-15. Appl. Catal. A 2016, 520, 114–121. [Google Scholar] [CrossRef]
- Rodriguez-Gomez, A.; Pereniguez, R.; Caballero, A. Understanding the differences in catalytic performance for hydrogen production of Ni and Co supported on mesoporous SBA-15. Catal. Today 2018, 307, 224–230. [Google Scholar] [CrossRef]
- Taherian, Z.; Yousefpour, M.; Tajally, M.; Khoshandam, B. Catalytic performance of Samaria-promoted Ni and Co/SBA-15 catalysts for dry reforming of methane. Int. J. Hydrogen Energy 2017, 42, 24811–24822. [Google Scholar] [CrossRef]
- Peña, L.; Valencia, D.; Klimova, T. CoMo/SBA-15 catalysts prepared with EDTA and citric acid and their performance in hydrodesulfurization of dibenzothiophene. Appl. Catal. B 2014, 147, 879–887. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Arafat, Y.; Atia, H.; AididIbrahim, A.; Ha, Q.L.M.; Schneider, M.; Pohl, M.M.; Fakeeha, A.H. CO2-reforming of methane to produce syngas over Co-Ni/SBA-15 catalyst: Effect of support modifiers (Mg, La and Sc) on catalytic stability. J. CO2 Util. 2017, 21, 395–404. [Google Scholar] [CrossRef]
- Patel, A.; Rufford, T.E.; Rudolph, V.; Zhu, Z. Selective catalytic reduction of NO by CO over CuO supported on SBA-15: Effect of CuO loading on the activity of catalysts. Catal. Today 2011, 166, 188–193. [Google Scholar] [CrossRef]
- Chirieac, A.; Dragoi, B.; Ungureanu, A.; Ciotonea, C.; Mazilu, I.; Royer, S.; Mamede, A.S.; Rombi, E.; Ferino, I.; Dumitriu, E. Facile synthesis of highly dispersed and thermally stable copper-based nanoparticles supported on SBA-15 occluded with P123 surfactant for catalytic applications. J. Catal. 2016, 339, 270–283. [Google Scholar] [CrossRef]
- Liu, Y.; Qiu, J.; Jiang, Y.; Liu, Z.; Meng, M.; Ni, L.; Qin, C.; Peng, J. Selective Ce(III) ion-imprinted polymer grafted on Fe3O4 nanoparticles supported by SBA-15 mesopores microreactor via surface-initiated RAFT polymerization. Microporous Mesoporous Mater. 2016, 234, 176–185. [Google Scholar] [CrossRef]
- Huang, S.; He, S.; Deng, L.; Wang, J.; He, D.; Lu, J.; Luo, Y. One-step synthesis of methanethiol with mixture gases (CO/H2S/H2) over SBA-15 supported Mo-based catalysts. Procedia Eng. 2015, 102, 684–691. [Google Scholar] [CrossRef]
- Rivas, I.; Alvarez, J.; Pietri, E.; Pérez-Zurita, M.J.; Goldwasser, M.R. Perovskite-type oxides in methane dry reforming: Effect of their incorporation into a mesoporous SBA-15 silica-host. Catal. Today 2010, 149, 388–393. [Google Scholar] [CrossRef]
- Wang, N.; Yu, X.; Wang, Y.; Chu, W.; Liu, M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier. Catal. Today 2013, 212, 98–107. [Google Scholar] [CrossRef]
- Kang, D.; Lim, H.S.; Lee, J.W. Enhanced catalytic activity of methane dry reforming by the confinement of Ni nanoparticles into mesoporous silica. Int. J. Hydrogen Energy 2017, 42, 11270–11282. [Google Scholar] [CrossRef]
- Gálvez, M.E.; Albarazi, A.; Da Costa, P. Enhanced catalytic stability through non-conventional synthesis of Ni/SBA-15 for methane dry reforming at low temperatures. Appl. Catal. A 2015, 504, 143–150. [Google Scholar] [CrossRef]
- Prasanth, K.P.; Raj, M.; Bajaj, H.C.; Kim, T.H.; Jasra, R.V. Hydrogen sorption in transition metal modified mesoporous materials. Int. J. Hydrogen Energy 2010, 35, 2351–2360. [Google Scholar] [CrossRef]
- Taherian, Z.; Yousefpour, M.; Tajally, M.; Khoshandam, B. A comparative study of ZrO2, Y2O3 and Sm2O3 promoted Ni/SBA-15 catalysts for evaluation of CO2/methane reforming performance. Int. J. Hydrogen Energy 2017, 42, 16408–16420. [Google Scholar] [CrossRef]
- Gil, A.G.; Wu, Z.; Chadwick, D.; Li, K. Ni/SBA-15 Catalysts for combined steam methane reforming and water gas shift—Prepared for use in catalytic membrane reactors. Appl. Catal. A 2015, 506, 188–196. [Google Scholar] [CrossRef]
- Karam, L.; Casale, S.; El Zakhem, H.; El Hassan, N. Tuning the properties of nickel nanoparticles inside SBA-15 mesopores for enhanced stability in methane reforming. J. CO2 Util. 2017, 21, 119–124. [Google Scholar] [CrossRef]
- Taherian, Z.; Yousefpour, M.; Tajally, M.; Khoshandam, B. Promotional effect of samarium on the activity and stability of Ni-SBA-15 catalysts in dry reforming of methane. Microporous Mesoporous Mater. 2017, 251, 9–18. [Google Scholar] [CrossRef]
- Tao, M.; Meng, X.; Xin, Z.; Bian, Z.; Lv, Y.; Gu, J. Synthesis and characterization of well dispersed nickel-incorporated SBA-15 and its high activity in syngas methanation reaction. Appl. Catal. A 2016, 516, 127–134. [Google Scholar] [CrossRef]
- Shanmugam, V.; Zapf, R.; Neuberg, S.; Hessel, V.; Kolb, G. Effect of ceria and zirconia promotors on Ni/SBA-15 catalysts for coking and sintering resistant steam reforming of propylene glycol in microreactors. Appl. Catal. B Environ. 2017, 203, 859–869. [Google Scholar] [CrossRef]
- Yang, W.; Liu, H.; Li, Y.; Wu, H.; He, D. CO2 reforming of methane to syngas over highly-stable Ni/SBA-15 catalysts prepared by P123-assisted method. Int. J. Hydrogen Energy 2016, 41, 1513–1523. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Wu, H.; Liu, J.; He, D. Effects of α- and γ-cyclodextrin-modified impregnation method on physicochemical properties of Ni/SBA-15 and its catalytic performance in CO2 reforming of methane. Chin. J. Catal. 2015, 36, 283–289. [Google Scholar] [CrossRef]
- Zhang, Q.; Long, K.; Wang, J.; Zhang, T.; Song, Z.; Lin, Q. A novel promoting effect of chelating ligand on the dispersion of Ni species over Ni/SBA-15 catalyst for dry reforming of methane. Int. J. Hydrogen Energy 2017, 42, 14103–14114. [Google Scholar] [CrossRef]
- Ortega-Domínguez, R.A.; Vargas-Villagrán, H.; Peñaloza-Orta, C.; Saavedra-Rubio, K.; Bokhimi, X.; Klimova, T.E. A facile method to increase metal dispersion and hydrogenation activity of Ni/SBA-15 catalysts. Fuel 2017, 198, 110–122. [Google Scholar] [CrossRef]
- Yang, W.; He, D. Role of poly(N-vinyl-2-pyrrolidone) in Ni dispersion for highly-dispersed Ni/SBA-15 catalyst and its catalytic performance in carbon dioxide reforming of methane. Appl. Catal. A 2016, 524, 94–104. [Google Scholar] [CrossRef]
- He, S.; Mei, Z.; Liu, N.; Zhang, L.; Lu, J.; Li, X.; Wang, J.; He, D.; Luo, Y. Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: Effect of nickel precursor. Int. J. Hydrogen Energy 2017, 42, 14429–14438. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T.; Shi, Y.; Zhao, B.; Wang, M.; Liu, Q.; Wang, J.; Long, K.; Duan, Y.; Ning, P. A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane. J. CO2 Util. 2017, 17, 10–19. [Google Scholar] [CrossRef]
- Cakiryilmaz, N.; Arbag, H.; Oktar, N.; Dogu, G.; Dogu, T. Effect of W incorporation on the product distribution in steam reforming of bio-oil derived acetic acid over Ni based Zr-SBA-15 catalyst. Int. J. Hydrogen Energy 2018, 43, 3629–3642. [Google Scholar] [CrossRef]
- Kaydouh, M.N.; Hassan, N.E.; Davidson, A.; Casale, S.; El Zakhem, H.; Massiani, P. Effect of the order of Ni and Ce addition in SBA-15 on the activity in dry reforming of methane. C. R. Chim. 2015, 18, 293–301. [Google Scholar] [CrossRef]
- Setiabudia, H.D.; Chonga, C.C.; Abeda, S.M.; Tehc, L.P.; China, S.Y. Comparative study of Ni-Ce loading method: Beneficial effect of ultrasonicassisted impregnation method in CO2 reforming of CH4 over Ni-Ce/SBA-15. J. Environ. Chem. Eng. 2018, 6, 745–753. [Google Scholar] [CrossRef]
- Zuo, Z.J.; Shen, C.F.; Tan, P.J.; Huang, W. Ni based on dual-support Mg-Al mixed oxides and SBA-15 catalysts for dry reforming of methane. Catal. Commun. 2013, 41, 132–135. [Google Scholar] [CrossRef]
- Bulánek, R.; Kalužová, A.; Setnička, M.; Zukal, A.; Čičmanec, P.; Mayerová, J. Study of vanadium based mesoporous silicas for oxidative dehydrogenation of propane and n-butane. Catal. Today 2012, 179, 149–158. [Google Scholar] [CrossRef]
- Mitran, G.; Ahmed, R.; Iro, E.; Hajimirzaee, S.; Hodgson, S.; Urda, A.; Olea, M.; Marcu, I.C. Propane oxidative dehydrogenation over VOx/SBA-15 catalysts. Catal. Today 2018, 306, 260–267. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, Z.; Jiao, J.; Yin, H.; Yan, W.; Hagaman, E.W.; Yu, J.; Dai, S. Surface functionalization of mesoporous silica SBA-15 by liquid-phase grafting of zirconium phosphate. Microporous Mesoporous Mater. 2010, 129, 200–209. [Google Scholar] [CrossRef]
- Albarazi, A.; Gálvez, M.E.; Da Costa, P. Synthesis strategies of ceria–zirconia doped Ni/SBA-15 catalysts for methane dry reforming. Catal. Commun. 2015, 59, 108–112. [Google Scholar] [CrossRef]
Metal/Code | Gas/Liquid, t/°C, Equilibration Time | Adsorbate | Concentration Range | Result | Reference |
---|---|---|---|---|---|
Ni2 | Gas, 750, 1 h | Hydrogen | 3% H2/Ar | 0.023 mmol/g Ni2 | [46] |
Ni3 | 0.068 mmol/g Ni3 | ||||
Ni4 | 0.055 mmol/g Ni4 | ||||
Ni5 | Gas, −195, 1 h | Hydrogen | 112 kPa | 76.8 mL/g Ni5 | [47] |
Gas, 30, 1 h | 4000 kPa | 17.6 mL/g Ni6 |
Metal/Code | Reaction | t, ᵒC | Conversion, % Equilibration Time | Selectivity % | Reference |
---|---|---|---|---|---|
None1 | Degradation of quinoline | 300 | 3 | [16] | |
None2 | Reaction of diphenyl carbonate with isosorbide to poly(isosorbide carbonate) | 240 | 67 | [18] | |
None3 | Conversion of 2,5-hexanedione to 2,5-dimethylfuran | 350 | 8 | 19 | [26] |
Conversion of 2,5-hexanedione to 3-methyl-2-cyclopentenone | 81 | ||||
None4 | Conversion of acetic acid to hydrogen | 750 | 74 | 2 | [61] |
Al3 | Esterification of acetic acid with n-butanol | 80 | 70 | [12] | |
Al3 | Benzylation of anisole | 100 | 12 | ||
Al4 | Esterification of acetic acid with n-butanol | 80 | 80 | ||
Al4 | Benzylation of anisole | 100 | 25 | ||
Al5 | Esterification of acetic acid with n-butanol | 80 | 73 | ||
Al5 | Benzylation of anisole | 100 | 51 | ||
Al6 | Esterification of acetic acid with n-butanol | 80 | 58 | ||
Al6 | Benzylation of anisole | 100 | 55 | ||
Al15 | Decarboxylation of methyl palmitate to alkane | 340 | 45 | 65 | [14] |
Al16 | 69 | 75 | |||
Al17 | 78 | 72 | |||
Al21 | Degradation of quinoline | 300 | 8 | [16] | |
Ca2 | Reaction of diphenyl carbonate with isosorbide to poly(isosorbide carbonate) | 240 | 82 | [18] | |
Ca3 | 88 | ||||
Ca4 | 94 | ||||
Ca5 | 95 | ||||
Ca6 | 94 | ||||
Ca7 | 90 | ||||
Ce6 | Conversion of toluene to carbon dioxide | 360 | 58 | 95 | [23] |
Conversion of ethyl acetate to ethanol | 81 | 31 | |||
Ce15 | Conversion of 2,5-hexanedione to 2,5-dimethylfuran | 350 | 51 | 3 | [26] |
Conversion of 2,5-hexanedione to 3-methyl-2-cyclopentenone | 97 | ||||
Oxidation of methanol to methanal | 250 | 7 | 21 | ||
350 | 13 | 50 | |||
Conversion of methanol to dimethyl ether | 250 | 7 | 4 | ||
350 | 13 | 3 | |||
Conversion of methanol to methyl formate | 250 | 7 | 5 | ||
350 | 13 | 40 | |||
Ce/Ni8 | Conversion of anisole to methoxycyclohexane | 270 | 7 | 81 | [25] |
290 | 18 | 59 | |||
Ce/Ni9 | 270 | 26 | 76 | ||
290 | 29 | 55 | |||
Ce/Ni10 | 270 | 28 | 70 | ||
290 | 33 | 49 | |||
Ce/Ni11 | Conversion of methanol to hydrogen | 650 | 97 | 85 | [27] |
Ce/Ni12 | 98 | 90 | |||
Ce/Ni13 | 100 | 98 | |||
Ce/Ni14 | 98 | 85 | |||
Ce/Zr1 | Conversion of 2,5-hexanedione to 2,5-dimethylfuran | 350 | 46 | 15 | [26] |
Conversion of 2,5-hexanedione to 3-methyl-2-cyclopentenone | 85 | ||||
Oxidation of methanol to methanal | 250 | 5 | 39 | ||
Conversion of methanol to methyl formate | 13 | ||||
Conversion of methanol to dimethyl ether | 44 | ||||
Oxidation of methanol to methanal | 350 | 17 | 48 | ||
Conversion of methanol to methyl formate | 36 | ||||
Conversion of methanol to dimethyl ether | 10 | ||||
Ce/Zr2 | Oxidation of methanol to methanal | 250 | 3 | 33 * | |
Conversion of methanol to dimethyl ether | 52 * | ||||
Conversion of methanol to methyl formate | 25 * | ||||
Conversion of 2,5-hexanedione to 2,5-dimethylfuran | 350 | 55 | 18 | ||
Conversion of 2,5-hexanedione to 3-methyl-2-cyclopentenone | 82 | ||||
Conversion of methanol to methyl formate | 12 | 26 | |||
Oxidation of methanol to methanal | 40 | ||||
Conversion of methanol to dimethyl ether | 30 | ||||
Co1 | Conversion of benzene to CO2 and H2O (oxidation of benzene) | 240 | 48 | [20] | |
255 | 100 | ||||
Co5 | Epoxidation of styrene with oxygen | 100 | 70 | 63 | [29] |
82 | 64 | ||||
92 | 63 | ||||
94 | 66 | ||||
48 | 55 | ||||
Co14 | Conversion of CO2 to CO | 753 | 40 | [32] | |
Conversion of CH4 to H2 | 728 | 44 | |||
Co15 | Dry reforming of CH4 with CO2 (conversion CH4) | 700 | 20 | [33] | |
Co16 | Conversion of CH4 to H2 | 550 | 22 | [34] | |
700 | 78 | ||||
Conversion of CO2 to CO | 550 | 18 | |||
700 | 90 | ||||
Co17 | Dry reforming of CH4 with CO2 (conversion of CH4) | 750 | 0 | [35] | |
Co18 | 550 | 2 | [36] | ||
600 | 8 | ||||
700 | 24 | ||||
Co/Ce1 | Conversion of benzene to CO2 and H2O (oxidation of benzene) | 280 | 51 | [20] | |
320 | 100 | ||||
Co/Ce2 | Oxidation of benzene | 220 | 10 | [22] | |
260 | 50 | ||||
275 | 90 | ||||
Co/Ce3 | 220 | 10 | |||
265 | 50 | ||||
300 | 90 | ||||
Co/Ce4 | 245 | 10 | |||
280 | 50 | ||||
300 | 90 | ||||
Co/Ce5 | 245 | 10 | |||
300 | 50 | ||||
316 | 90 | ||||
Co/Ce6 | 255 | 10 | |||
319 | 50 | ||||
340 | 90 | ||||
Co/Ce7 | 270 | 10 | |||
340 | 50 | ||||
372 | 90 | ||||
Co/Mo1 | Hydrodesulfurization of dibenzothiophene | 300 | 16 (4 h) | [37] | |
37 (8 h) | |||||
Co/Mo2 | 25 (4 h) | ||||
53 (8 h) | |||||
Co/Mo3 | 30 (4 h) | ||||
63 (8 h) | |||||
Co/Mo4 | 34 (4 h) | ||||
62 (8 h) | |||||
Co/Mo5 | 38 (4 h) | ||||
76 (8 h) | |||||
Co/Mo6 | 48 (4 h) | ||||
92 (8 h) | |||||
Co/Mo7 | 22 (4 h) | ||||
43 (8 h) | |||||
Co/Mo8 | 30 (4 h) | ||||
62 (8 h) | |||||
Co/Mo9 | 35 (4 h) | ||||
77 (8 h) | |||||
Co/Ni1 | Conversion of CH4 to H2 | 700 | 55 | [38] | |
Conversion of CO2 to CO | 69 | ||||
Co/Ni2 | Conversion of CH4 to H2 | 76 | |||
Conversion of CO2 to CO | 81 | ||||
Co/Ni3 | Conversion of CH4 to H2 | 45 | |||
Conversion of CO2 to CO | 60 | ||||
Co/Ni4 | Conversion of CO2 to CO | 80 | |||
Conversion of CH4 to H2 | 74 | ||||
Co/Ru1 | Conversion of CH4 to H2 | 775 | 42 | [32] | |
Conversion of CO2 to CO | 750 | 40 | |||
Co/Ru2 | Conversion of CH4 to H2 | 790 | 82 | ||
Conversion of CO2 to CO | 71 | ||||
Co/Ru3 | Conversion of CO2 to CO | 762 | 63 | ||
Conversion of CH4 to H2 | 790 | 69 | |||
Cr1 | Epoxidation of styrene with oxygen | 100 | 13 | 48 | [29] |
Cu1 | Conversion of ethyl acetate to ethanol | 360 | 17 | 22 | [23] |
Conversion of toluene to carbon dioxide | 58 | 90 | |||
Cu2 | Reduction of NO to N2 | 440 | 30 | [39] | |
510 | 45 | ||||
Cu3 | 440 | 40 | |||
490 | 55 | ||||
Cu4 | 440 | 7 | |||
490 | 20 | ||||
Cu5 | Epoxidation of styrene with oxygen | 100 | 0 | 0 | [29] |
Cu/Al1 | Decarboxylation of methyl palmitate to alkane | 340 | 75 | 72 | [14] |
Cu/Ce1 | Conversion of toluene to carbon dioxide | 360 | 65 | 93 | [23] |
Conversion of ethyl acetate to ethanol | 50 | 10 | |||
Cu/Ce2 | Conversion of toluene to carbon dioxide | 71 | 91 | ||
Conversion of ethyl acetate to ethanol | 60 | 13 | |||
Cu/Ce3 | Conversion of toluene to carbon dioxide | 76 | 94 | ||
Conversion of ethyl acetate to ethanol | 91 | 7 | |||
Cu/Ce4 | Conversion of methanol to methyl formate | 250 | 6 | 85 | [26] |
Cu/Ce4 | Oxidation of methanol to methanal | 6 | |||
Cu/Ce4 | Conversion of methanol to dimethyl ether | 0 | |||
Cu/Ce5 | Conversion of methanol to dimethyl ether | 7 | 2 | ||
Conversion of methanol to methyl formate | 87 | ||||
Oxidation of methanol to methanal | 9 | ||||
Cu/Ce6 | Conversion of methanol to methyl formate | 6 | 74 | ||
Conversion of methanol to dimethyl ether | 1 | ||||
Oxidation of methanol to methanal | 18 | ||||
Cu/Ni1 | Conversion of cinnamaldehyde to hydrocinnamyl alcohol | 130 | 60 | 8 | [40] |
Oxidation of carbon oxide to carbon dioxide | 160 | 27 | |||
Cu/Ni2 | Conversion of cinnamaldehyde to hydrocinnamyl alcohol | 130 | 60 | 10 | |
Oxidation of carbon oxide to carbon dioxide | 160 | 40 | |||
Cu/Ni3 | Conversion of cinnamaldehyde to hydrocinnamyl alcohol | 130 | 60 | 24 | |
Oxidation of carbon oxide to carbon dioxide | 160 | 43 | |||
Cu/Ni4 | Conversion of cinnamaldehyde to hydrocinnamyl alcohol | 130 | 60 | 20 | |
Oxidation of carbon oxide to carbon dioxide | 160 | 50 | |||
Cu/Zn1 | Decarboxylation of methyl palmitate to alkane | 340 | 71 | 78 | [14] |
Cu/Zr1 | Oxidation of methanol to methanal | 250 | 15 | 16 | [26] |
Conversion of methanol to methyl formate | 68 | ||||
Conversion of methanol to dimethyl ether | 5 | ||||
Fe5 | Epoxidation of styrene with oxygen | 100 | 21 | 56 | [29] |
Ga1 | Degradation of quinoline | 300 | 5 | [16] | |
K/Mo2 | Conversion of CO, H2S, H2 to methanethiol | 275 | 61 | 40 | [42] |
300 | 62 | 47 | |||
325 | 63 | 45 | |||
350 | 64 | 38 | |||
375 | 64 | 26 | |||
La/Ni1 | Dry reforming of CH4 with CO2 (conversion of CH4) | 600 | 63 | [43] | |
700 | 88 | ||||
La/Ni2 | 600 | 69 | |||
700 | 82 | ||||
La/Ni3 | 600 | 53 | |||
700 | 86 | ||||
La/Ni4 | Conversion of CH4 to H2 | 600 | 42 | 79 | [44] |
750 | 95 | 97 | |||
Conversion of CO2 to CO | 600 | 40 | |||
750 | 80 | [44] | |||
Mn1 | Epoxidation of styrene with oxygen | 100 | 3 | 36 | [29] |
Ni1 | Conversion of methane to hydrogen | 750 | 88 | [45] | |
Conversion of carbon dioxide to carbon oxide | 86 | ||||
Ni2 | Conversion of methane to hydrogen | 500 | 20 | [46] | |
700 | 70 | ||||
Conversion of carbon dioxide to carbon oxide | 500 | 25 | |||
600 | 65 | ||||
Ni3 | Conversion of methane to hydrogen | 500 | 15 | ||
700 | 75 | ||||
Conversion of carbon dioxide to carbon oxide and hydrogen | 500 | 20 | |||
600 | 50 | ||||
Ni4 | Conversion of carbon dioxide to carbon oxide and hydrogen | 500 | 30 | ||
600 | 100 | ||||
Conversion of methane to hydrogen | 500 | 18 | |||
700 | 80 | ||||
Ni6 | Epoxidation of styrene with oxygen | 100 | 6 | 38 | [29] |
Ni7 | Methane reforming with CO2 for hydrogen and syngas production (conversion of methane) | 600 | 49 | [24] | |
750 | 79 | ||||
Ni8 | Conversion of CH4 to H2 | 550 | 10 | [48] | |
700 | 55 | ||||
Conversion of CO2 to CO | 550 | 20 | |||
700 | 77 | ||||
Ni9 | Conversion of glycerol to H2 | 600 | 90 | 53 | [17] |
Ni14 | Conversion CH4 to CO2 and CO (selectivity for CO2) | 400 | 5 | 97 | [49] |
450 | 15 | 91 | |||
500 | 20 | 87 | |||
550 | 25 | 83 | |||
Ni15 | Conversion of CH4 to H2 | 650 | 7 | [50] | |
Conversion of CO2 to CO | 7 | ||||
Ni16 | Conversion of CH4 to H2 | 62 | |||
Conversion of CO2 to CO | 70 | ||||
Ni17 | Conversion of CH4 to H2 | 20 | |||
Conversion of CO2 to CO | 27 | ||||
Ni18 | Conversion of CH4 to H2 | 550 | 8 | [51] | |
650 | 35 | ||||
Conversion of CO2 to CO | 550 | 16 | |||
650 | 47 | ||||
Ni19 | Dry reforming of CH4 with CO2 (conversion CH4) | 700 | 77 | [33] | |
Ni20 | Reaction of syngas to methane (conversion of CO) | 400 | 83 | [52] | |
Ni21 | 100 | ||||
Ni22 | 250 | 64 | |||
400 | 98 | ||||
Ni23 | 250 | 40 | |||
400 | 100 | ||||
Ni24 | Conversion of anisole to methoxycyclohexane | 270 | 6 | 80 | [25] |
290 | 15 | 61 | |||
Ni25 | Reforming of propylene glycol (selectivity for H2) | 630 | 88 | 57 | [53] |
Ni29 | Conversion of CH4 to H2 | 750 | 51 | [54] | |
Conversion of CO2 to CO | 65 | ||||
Ni30 | Conversion of CO2 to CO | 67 | |||
Conversion of CH4 to H2 | 56 | ||||
Ni31 | Conversion of CO2 to CO | 91 | |||
Conversion of CH4 to H2 | 76 | ||||
Ni32 | Conversion of CO2 to CO | 90 | |||
Conversion of CH4 to H2 | 77 | ||||
Ni33 | Conversion of CH4 to H2 | 78 | |||
Conversion of CO2 to CO | 92 | ||||
Ni34 | Conversion of CH4 to H2 | 68 | |||
Conversion of CO2 to CO | 78 | ||||
Ni35 | Conversion of CH4 to H2 | 700 | 87 | [55] | |
Conversion of CO2 to CO | 94 | ||||
Ni36 | Conversion of CH4 to H2 | 69 | |||
Conversion of CO2 to CO | 79 | ||||
Ni37 | Conversion of CH4 to H2 | 600 | 41 | [56] | |
800 | 93 | ||||
Conversion of CO2 to CO | 600 | 58 | |||
800 | 95 | ||||
Ni38 | Conversion of CH4 to H2 | 600 | 40 | ||
800 | 92 | ||||
Conversion of CO2 to CO | 600 | 56 | |||
800 | 94 | ||||
Ni39 | Conversion of CH4 to H2 | 600 | 41 | ||
800 | 93 | ||||
Conversion of CO2 to CO | 600 | 60 | |||
800 | 95 | ||||
Ni40 | Conversion of CH4 to H2 | 600 | 40 | ||
800 | 93 | ||||
Conversion of CO2 to CO | 600 | 45 | |||
800 | 94 | ||||
Ni41 | Conversion of naphthalene to tetralin | 300 | 91 | [57] | |
Conversion of naphthalene to cis-decalin | 5 | ||||
Ni42 | Conversion of naphthalene to tetralin | 88 | |||
Conversion of naphthalene to cis-decalin | 6 | ||||
Ni43 | Conversion of naphthalene to tetralin | 87 | |||
Conversion of naphthalene to cis-decalin | 7 | ||||
Ni44 | Conversion of naphthalene to tetralin | 87 | |||
Conversion of naphthalene to cis-decalin | 7 | ||||
Ni45 | Conversion of naphthalene to tetralin | 49 | |||
Conversion of naphthalene to cis-decalin | 25 | ||||
Ni46 | Conversion of naphthalene to tetralin | 30 | |||
Conversion of naphthalene to cis-decalin | 34 | ||||
Ni47 | Conversion of naphthalene to tetralin | 38 | |||
Conversion of naphthalene to cis-decalin | 31 | ||||
Ni48 | Conversion of naphthalene to tetralin | 23 | |||
Conversion of naphthalene to cis-decalin | 38 | ||||
Ni49 | Conversion of naphthalene to tetralin | 22 | |||
Conversion of naphthalene to cis-decalin | 40 | ||||
Ni50 | Conversion of naphthalene to tetralin | 12 | |||
Conversion of naphthalene to cis-decalin | 44 | ||||
Ni51 | Conversion of CH4 to H2 | 750 | 51 | [58] | |
Conversion of CO2 to CO | 65 | ||||
Ni52 | Conversion of CH4 to H2 | 65 | |||
Conversion of CO2 to CO | 75 | ||||
Ni53 | Conversion of CH4 to H2 | 70 | |||
Conversion of CO2 to CO | 84 | ||||
Ni54 | Conversion of CH4 to H2 | 79 | |||
Conversion of CO2 to CO | 85 | ||||
Ni55 | Conversion of CH4 to H2 | 76 | |||
Conversion of CO2 to CO | 84 | ||||
Ni56 | Conversion of CH4 to H2 | 60 | |||
Conversion of CO2 to CO | 70 | ||||
Ni57 | Conversion of ethanol to CO, CH4, CO2 | 400 | 99 | 23 CH4 | [59] |
12 CO2 | |||||
Ni58 | 100 | 23 CH4 | |||
12 CO2 | |||||
Ni59 | 100 | 24 CH4 | |||
1 CO2 | |||||
Ni60 | 100 | 22 CH4 | |||
1 CO2 | |||||
Ni61 | 100 | 24 CH4 | |||
2 CO2 | |||||
Ni62 | Conversion of methanol to hydrogen | 650 | 85 | 62 | [27] |
Ni63 | Conversion of methane to hydrogen | 650 | 61 | [60] | |
800 | 94 | ||||
Ni64 | 650 | 62 | |||
800 | 96 | ||||
Ni65 | Dry reforming of CH4 with CO2 (conversion CH4) | 750 | 60 | [35] | |
Ni66 | Conversion of acetic acid to hydrogen | 750 | 100 | 70 | [61] |
Ni67 | Dry reforming of CH4 with CO2 (conversion of CH4) | 550 | 9 | [36] | |
Ni67 | 600 | 21 | |||
Ni67 | 700 | 51 | |||
Ni/Ca1 | Conversion of glycerol to H2 | 600 | 98 | 53 | [17] |
Ni/Ce1 | Methane reforming with CO2 for hydrogen and syngas production (conversion of methane) | 600 | 52 | [24] | |
750 | 78 | ||||
Ni/Ce2 | 600 | 56 | |||
750 | 79 | ||||
Ni/Ce3 | 600 | 57 | |||
750 | 90 | ||||
Ni/Ce5 | Conversion of CH4 to H2 | 400 | 6 | [62] | |
700 | 70 | ||||
Conversion of CO2 to CO | 400 | 5 | |||
700 | 66 | ||||
Ni/Ce6 | Conversion of CH4 to H2 | 400 | 40 | ||
700 | 92 | ||||
Conversion of CO2 to CO | 400 | 42 | |||
700 | 85 | ||||
Ni/Ce7 | Conversion of anisole to methoxycyclohexane | 270 | 7 | 81 | [25] |
290 | 15 | 61 | |||
Ni/Ce8 | Reforming of propylene glycol (selectivity for H2) | 630 | 95 | 41 | [53] |
Ni/Ce10 | 96 | 38 | |||
Ni/Ce11 | Conversion of CH4 to H2 | 800 | 80 | [63] | |
Conversion of CO2 to CO | 800 | 80 | |||
Ni/Ce12 | Conversion of CH4 to H2 | 800 | 95 | ||
Conversion of CO2 to CO | 800 | 90 | |||
Ni/Ce13 | Conversion of CH4 to H2 | 800 | 90 | ||
Conversion of CO2 to CO | 800 | 85 | |||
Ni/Co1 | Dry reforming of CH4 with CO2 (conversion of CH4) | 700 | 75 | [33] | |
Ni/Co2 | 73 | ||||
Ni/Co3 | 74 | ||||
Ni/Co4 | 50 | ||||
Ni/Co5 | 40 | ||||
Ni/Co7 | Dry reforming of CH4 with CO2 (conversion CH4) | 750 | 3 | [35] | |
Ni/Mg1 | Dry reforming of CH4 with CO2 (conversion of CH4) | 800 | 85 | [64] | |
Ni/Mg2 | 75 | ||||
Ni/Mg3 | 400 | ||||
Ni/Mg4 | 98 | ||||
Ni/Mg5 | 80 | ||||
Ni/Mg6 | Conversion of glycerol to H2 | 600 | 99 | 53 | [17] |
Ni/Sm1 | Conversion of CO2 to CO | 550 | 14 | [51] | |
650 | 37 | ||||
Conversion of CH4 to H2 | 550 | 8 | |||
650 | 21 | ||||
Ni/Sm2 | Conversion of CO2 to CO | 550 | 25 | ||
650 | 56 | ||||
Conversion of CH4 to H2 | 550 | 16 | |||
650 | 44 | ||||
Ni/Sm3 | Conversion of CO2 to CO | 550 | 33 | ||
650 | 57 | ||||
Conversion of CH4 to H2 | 550 | 25 | |||
650 | 54 | ||||
Ni/W4 | Conversion of acetic acid to hydrogen | 650 | 91 | 28 | [61] |
700 | 93 | 24 | |||
750 | 93 | 45 | |||
Ni/Y1 | Conversion of CH4 to H2 | 550 | 13 | [48] | |
700 | 70 | ||||
Conversion of CO2 to CO | 550 | 22 | |||
700 | 55 | ||||
Ni/Zr1 | Conversion of CH4 to H2 | 550 | 15 | ||
700 | 45 | ||||
Conversion of CO2 to CO | 550 | 22 | |||
700 | 74 | ||||
Ni/Zr2 | Reforming of propylene glycol (selectivity for H2) | 630 | 97 | 36 | [53] |
Ni/Zr3 | Conversion of acetic acid to hydrogen | 750 | 100 | 58 | [61] |
Sm | Dry reforming of CH4 with CO2 (conversion of CH4) | 550 | 2 | [36] | |
600 | 3 | ||||
700 | 11 | ||||
Sm/Ni4 | Conversion of CO2 to CO | 550 | 35 | [48] | |
700 | 74 | ||||
Conversion of CH4 to H2 | 550 | 28 | |||
700 | 72 | ||||
Sm/Ni2 | Dry reforming of CH4 with CO2 (conversion of CH4) | 550 | 19 | [36] | |
600 | 29 | ||||
700 | 58 | ||||
V1 | Oxidative dehydrogenation of propane to lower hydrocarbons, CO2, CO | 540 | 59 | [65] | |
Oxidative dehydrogenation of n-butane to lower hydrocarbons, CO2, CO | 63 | ||||
V2 | Oxidative dehydrogenation of propane to lower hydrocarbons, CO2, CO | 62 | |||
Oxidative dehydrogenation of n-butane to lower hydrocarbons, CO2, CO | 95 | ||||
V3 | Conversion of propane to propene | 450 | 1 | 87 | [66] |
500 | 3 | 80 | |||
550 | 12 | 68 | |||
600 | 16 | 66 | |||
V4 | 450 | 1 | 84 | ||
500 | 4 | 74 | |||
550 | 13 | 64 | |||
600 | 18 | 62 | |||
V5 | 450 | 1 | 83 | ||
500 | 5 | 72 | |||
550 | 14 | 59 | |||
600 | 19 | 57 | |||
V6 | 450 | 1 | 73 | ||
500 | 6 | 65 | |||
550 | 15 | 44 | |||
600 | 20 | 41 | |||
V7 | 450 | 2 | 71 | ||
500 | 7 | 58 | |||
550 | 16 | 39 | |||
600 | 22 | 38 | |||
Zn1 | Epoxidation of styrene with oxygen | 100 | 4 | 57 | [29] |
Zn/Al1 | Decarboxylation of methyl palmitate to alkane | 340 | 67 | 80 | [14] |
Zr2 | Conversion of 2,5-hexanedione to 2,5-dimethylfuran | 350 | 64 | 22 | [26] |
Conversion of 2,5-hexanedione to 3-methyl-2-cyclopentenone | 64 | 78 | |||
Conversion of methanol to dimethyl ether | 250 | 1 | 100 | ||
Conversion of methanol to methyl formate | 0 | ||||
Oxidation of methanol to methanal | 0 | ||||
Conversion of methanol to dimethyl ether | 350 | 19 | 43 | ||
Conversion of methanol to methyl formate | 42 | ||||
Oxidation of methanol to methanal | 28 | ||||
Zr3 | Conversion of acetic acid to hydrogen | 750 | 96 | 2 | [61] |
Zr/Ce1 | Conversion of methane to hydrogen | 740 | 91 | [68] | |
800 | 100 | ||||
Conversion of carbon dioxide to carbon oxide and hydrogen | 620 | 80 | |||
650 | 100 | ||||
Zr/Ce2 | Conversion of methane to hydrogen | 740 | 85 | ||
860 | 95 | ||||
Conversion of carbon dioxide to carbon oxide and hydrogen | 620 | 58 | |||
750 | 100 | ||||
Zr/Ce3 | Conversion of methane to hydrogen | 740 | 87 | ||
800 | 98 | ||||
Conversion of carbon dioxide to carbon oxide and hydrogen | 620 | 50 | |||
810 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmulski, M.; Mączka, E.; Ruchomski, L. Synthesis and Properties of SBA-15 Modified with Non-Noble Metals. Colloids Interfaces 2018, 2, 59. https://doi.org/10.3390/colloids2040059
Kosmulski M, Mączka E, Ruchomski L. Synthesis and Properties of SBA-15 Modified with Non-Noble Metals. Colloids and Interfaces. 2018; 2(4):59. https://doi.org/10.3390/colloids2040059
Chicago/Turabian StyleKosmulski, Marek, Edward Mączka, and Leszek Ruchomski. 2018. "Synthesis and Properties of SBA-15 Modified with Non-Noble Metals" Colloids and Interfaces 2, no. 4: 59. https://doi.org/10.3390/colloids2040059
APA StyleKosmulski, M., Mączka, E., & Ruchomski, L. (2018). Synthesis and Properties of SBA-15 Modified with Non-Noble Metals. Colloids and Interfaces, 2(4), 59. https://doi.org/10.3390/colloids2040059