An Efficient Bioemulsifier-Producing Bacillus subtilis UCP 0146 Isolated from Mangrove Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Microorganism and the Culture Conditions
2.2. Substrates
2.3. Production of the Bioemulsifier
2.4. The Full Factorial Design
2.5. Determination of the pH
2.6. Determination of the Surface Tension (ST)
2.7. Determination of the Emulsification Index (EI24)
2.8. Optical Microscopic Analysis of Emulsions
2.9. Determination of Viscosity
2.10. Determination of the Stability
2.11. Extraction and Yield of the Bioemulsifier
2.12. Determination of Ionic Charge
2.13. Application of the Bioemulsifier in an Oil Spreading Test and Dye Removal in Water
2.14. Application in the Removal of Oil in Marine Soil
3. Results
3.1. Production of a Bioemulsifier by Bacillus subtilis UCP 0146 in a Medium Containing Cassava Wastewater
3.2. Determination of the Influence of Inoculum Size, Temperature, and Agitation on Bioemulsifier Production by Bacillus subtilis
3.3. Characterization of Emulsion Droplets Using Burned Engine Oil
3.4. Stability of the Bioemulsifier by Determination of the Viscosity and the Emulsification Index
3.5. Efficiency of the Bioemulsifier in Petroderivative Dispersal and Pollutants Removal
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uzoigwe, C.; Burgess, J.G.; Ennis, C.J.; Rahman, P.K.S.M. Bioemulsifiers are not biosurfactants and require different screening approaches. Front. Microbiol. 2015, 6, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Bardone, E.; Bravi, M.; Keshavarz, T.; Secato, J.F.F.; Coelho, D.F.; Rosa, N.G.J.; Costa, L.D.L.; Tambourgi, E.B. Biosurfactant Production Using Bacillus subtilis and Industrial Waste as Substrate. Chem. Eng. Trans. 2016, 49, 103. [Google Scholar] [CrossRef]
- Souza, A.F.; Rodriguez, D.M.; Ribeaux, D.R.; Luna, M.A.C.; Lima, E.; Silva, T.A.; Andrade, R.F.S.; Gusmão, N.B.; Campos-Takaki, G.M. Waste Soybean Oil and Corn Steep Liquor as Economic Substrates for Bioemulsifier and Biodiesel Production by Candida lipolytica UCP 0998. Int. J. Mol. Sci. 2016, 17, 608. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, M.; Pastore, G.M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour. Technol. 2006, 97, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Gudiña, E.J.; Rangarajan, V.; Sen, R.; Rodrigues, L.R. Potential therapeutic applications of biosurfactants. Trends Pharmacol. Sci. 2013, 34, 667–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakthipriya, N.; Doble, M.; Sangwai, J.S. Action of biosurfactant producing thermophilic Bacillus subtilis on waxy crude oil and long chain paraffins. Int. Biodeterior. Biodegrad. 2015, 105, 168–177. [Google Scholar] [CrossRef]
- Parthipan, P.; Preetham, E.; Machuca, L.L.; Rahman, P.K.S.M.; Murugan, K.; Rajasekar, A. Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front. Microbiol. 2017, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Falode, O.A.M.A.A. Evaluation of Indigenous Biosurfactant-producing Bacteria for De-emulsification of Crude Oil. Microbiol. Res. J. Int. 2017, 18. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.F.S.; Antunes, A.A.; Lima, R.A.; Araújo, H.W.C.; Resende-Stoianoff, M.A.; Franco, L.O.; Campos-Takaki, G.M. Enhanced Production of an Glycolipid Biosurfactant Produced by Candida glabrata UCP/WFCC1556 for Application in Dispersion and Removal of Petroderivatives. Int. J. Curr. Microbiol. 2015, 4, 563–576. [Google Scholar]
- Saha, P.; Rao, K.V. Biosurfactants—A Current Perspective on Production and Applications. Nat. Environ. Pollut. Technol. 2017, 16, 181–188. [Google Scholar]
- Satpute, S.K.; Płaza, G.A.; Banpurkar, A.G. Management Systems in Production Engineering biosurfactants production from renewable natural resources: Example of innovative and smart technology in circular bioeconomy. Manag. Syst. Product. Eng. 2017, 25, 46–54. [Google Scholar] [CrossRef]
- Bouassida, M.; Fourati, N.; Ghazala, I.; Ellouze-Chaabouni, S.; Ghribi, D. Potential application of Bacillus subtilis SPB1 biosurfactants in laundry detergent formulations: Compatibility study with detergent ingredients and washing performance. Eng. Life Sci. 2018, 18, 70–77. [Google Scholar] [CrossRef]
- Andrade Silva, N.R.; Luna, M.A.C.; Santiago, A.L.C.M.A.; Franco, L.O.; Silva, G.K.B.; de Souza, P.M.; Okada, K.; Albuquerque, C.D.C.; da Silva, C.A.A.; Campos-Takaki, G.M. Biosurfactant-and-Bioemulsifier Produced by a Promising Cunninghamella echinulata Isolated from Caatinga Soil in the Northeast of Brazil. Int. J. Mol. Sci. 2014, 15, 15377–15395. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, D.G.; Soares Da Silva, R.D.C.F.; Luna, J.M.; Rufino, R.D.; Santos, V.A.; Banat, I.M.; Sarubbo, L.A. Biosurfactants: Promising molecules for petroleum biotechnology advances. Front. Microbiol. 2016, 7, 1718. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S.J.; Upasani, V.N. Critical Review on Biosurfactant Analysis, Purification and Characterization Using Rhamnolipid as a Model Biosurfactant. Bioresour. Technol. 2017, 232, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Nayarisseri, A.; Singh, P.; Singh, S.K. Screening, isolation and characterization of biosurfactant producing Bacillus subtilis strain ANSKLAB03. Bioinformation 2018, 14, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Vecino, X.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Biosurfactants in cosmetic formulations: Trends and challenges. Crit. Rev. Biotechnol. 2017, 37, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Glick, B.R.; Rathore, D. Biosurfactants as a Biological Tool to Increase Micronutrient Availability in Soil: A Review. Pedosphere 2018, 28, 170–189. [Google Scholar] [CrossRef]
- Jain, R.M.; Mody, K.; Joshi, N.; Mishra, A.; Jha, B. Effect of unconventional carbon sources on biosurfactant production and its application in bioremediation. Int. J. Biol. Macromol. 2013, 62, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Bouassida, M.; Ghazala, I.; Ellouze-Chaabouni, S.; Ghribi, D. Improved biosurfactant production by Bacillus subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil recovery in a sand system. J. Microbiol. Biotechnol. 2018, 28, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Patil, Y.; Rale, V. Biosurfactant Production: Emerging Trends and Promising Strategies. J. Appl. Microbiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Das, M.D. Application of biosurfactant produced by an adaptive strain of C. tropicalis MTCC230 in microbial enhanced oil recovery (MEOR) and removal of motor oil from contaminated marine soil and water. J. Pet. Sci. Eng. 2018, 170, 40–48. [Google Scholar] [CrossRef]
- Rodríguez-López, L.; Rincón-Fontán, M.; Vecino, X.; Manuel Cruz, J.; Moldes, A.B. Biological Surfactants vs. Polysorbates: Comparison of Their Emulsifier and Surfactant Properties. Tens. Surf. Deterg. 2018, 55, 273–280. [Google Scholar] [CrossRef]
- Selvam, K.; Selvankumar, T.; Rajiniganth, R.; Srinivasan, P.; Sudhakar, C.; Senthilkumar, B.; Govarthanan, M. Enhanced production of amylase from Bacillus sp. using groundnut shell and cassava waste as a substrate under process optimization: Waste to wealth approach. Biocatal. Agric. Biotechnol. 2016, 7, 250–256. [Google Scholar] [CrossRef]
- Saha, P.; Nath, D.; Choudhury, M.D.; Talukdar, A.D. Probiotic biosurfactants: A potential therapeutic exercises in biomedical sciences. In Microbial Biotechnology; Patra, J.K., Das, G., Shin, H., Eds.; Springer: Singapore, 2018; pp. 499–514. [Google Scholar]
- Perfumo, A.; Rudden, M.; Marchant, R.; Banat, I.M. Biodiversity of biosurfactants and roles in enhancing the (bio)availability of hydrophobic substrates. Cell. Ecophysiol. Microbe 2018. [Google Scholar] [CrossRef]
- Marine Soilri, D.; Kholiq, M.A. Biosurfactant producing bacteria from oil contaminated soil: Screening, identification, and process optimization. Asian J. Environ. Biotechnol. 2018, 1, 49–56. [Google Scholar]
- George, S.; Jayachandran, K. Biosurfactants from Processed Wastes. In Waste to Wealth; Springer: Singapore, 2018; pp. 45–58. [Google Scholar]
- De Oliveira, D.W.; Cara, A.B.; Lechuga-Villena, M.; García-Román, M.; Melo, V.M.; Gonçalves, L.R.; Vaz, D.A. Aquatic toxicity and biodegradability of a surfactant produced by Bacillus subtilis ICA56. J. Environ. Sci. Health Part A 2017, 52, 174–181. [Google Scholar] [CrossRef] [PubMed]
- John, U.S.; John, M.C. Production and Application of Microbial Surfactant from Cassava Wastewater. Am. J. Eng. Technol. Soc. 2015, 2, 85–89. [Google Scholar] [CrossRef]
- Elijah, A.; Asamudo, N. Molecular Characterization and Potential of Fungal Species Associated with Cassava Waste. Br. Biotechnol. J. 2016, 10, 1–15. [Google Scholar] [CrossRef]
- Larissa, K.; Nat Aacutessia, J.C.; Glaucia, M.P.; Ana, P.R.S.; Vander, F.M.; Simone, D.G. Adsorption of copper, zinc and lead on biosurfactant produced from cassava wastewater. Afr. J. Biotechnol. 2016, 15, 110–117. [Google Scholar] [CrossRef]
- Nitschke, M.; Pastore, G.M. Biossurfactantes: Propriedades e aplicações. Quim. Nova 2002, 25, 772–776. [Google Scholar] [CrossRef]
- Kuyukina, M.S.; Ivshina, I.B.; Makarov, S.O.; Litvinenko, L.V.; Cunningham, C.J.; Philp, J.C. Effect of biosurfactants on crude oil desorption and mobilization in a soil system. Environ. Int. 2005, 31, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.G.; Goldenberg, B.G. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [PubMed]
- Techaoei, S.; Leelapornpisid, P.; Santiarwarn, D.; Lumyong, S.; Mai, C. Preliminary Screening of Biosurfactant-Producing Microorganisms Isolated from Hot Spring and Garages in Northern Thailand. Curr. Appl. Sci. Technol. 2007, 7, 38–43. [Google Scholar]
- Aksu, Z.; Kutsal, T.; Gün, S.; Haciosmanoglu, N.; Gholaminejad, M. Investigation of biosorption of Cu (II), Ni(II) and Cr(VI) ions to activated sludge bacteria. Environ. Technol. 1991, 12, 915–921. [Google Scholar] [CrossRef]
- Rahman, P.K.S.M.; Sekhon Randhawa, K.K. Editorial: Microbiotechnology based surfactants and their applications. Front. Microbiol. 2015, 6, 1344. [Google Scholar] [CrossRef] [PubMed]
- Willumsen, B.; Christian, G.D.; Ruzicka, J. Flow injection renewable surface immunoassay for real time monitoring of biospecific interactions. Anal. Chem. 1997, 69, 3482–3489. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Salgueiro, A.A.; Sarubbo, L.A. Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J. Pet. Sci. Eng. 2013, 105, 43–50. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; Farias, C.B.B.; Campos-Takaki, G.M. Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr. Microbiol. 2007, 54, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.B.; Gonzales-Limache, E.E.; Sousa, S.T.P.; Dellagnezze, B.M.; Sartoratto, A.; Silva, L.C.F.; Sousa, M.P. Exploring the potential of halophilic bacteria from oil terminal environments for biosurfactant production and hydrocarbon degradation under high-salinity conditions. Int. Biodeterior. Biodegrad. 2018, 126, 231–242. [Google Scholar] [CrossRef]
- De Souza, C.G. Simultaneous quantification of lipopeptide isoforms by UPLC-MS in the fermentation broth from Bacillus subtilis CNPMS22. Anal. Bioanal. Chem. 2018, 410, 6827–6836. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.F.; Mather, R.R.; Fotheringham, A.F. Oil removal from used sorbents using a biosurfactant. Bioresour. Technol. 2005, 96, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Prévost, S.; Wattebled, L.; Laschewsky, A.; Gradzielski, M. Formation of monodisperse charged vesicles in mixtures of cationic gemini surfactants and anionic SDS. Langmuir 2011, 27, 582–591. [Google Scholar] [CrossRef] [PubMed]
Variables | Levels | ||
---|---|---|---|
–1 | 0 | +1 | |
Inoculum 108 CFU/mL (v/v) | 1 | 5 | 9 |
Temperature (°C) | 25 | 30 | 35 |
Orbital speed (rpm) | 100 | 150 | 200 |
Surface Tension (mN/m) | Emulsification Index (EI24) | |
---|---|---|
Hydrophobic Substrates | % | |
38.2 | Soybean oil | 50.0 |
38.0 | Corn oil | 65.0 |
38.2 | Canola oil | 50.0 |
38.4 | Olive oil | 90.0 |
38.7 | Wastes soybean oil | 50.0 |
37.8 | Kerosene | 40.0 |
37.2 | Diesel | - |
39.0 | Burned engine oil | 95.0 |
37.4 | Olive oil | 90.0 |
Assay | Burned Motor Oil | Soybean Oil | Waste Soybean Oil | Corn Oil | Canola Oil | |||||
---|---|---|---|---|---|---|---|---|---|---|
EI24 (%) | EI150 (%) | EI24 (%) | EI150 (%) | EI24 (%) | EI150 (%) | EI24 (%) | EI150 (%) | EI24 (%) | EI150 (%) | |
1 | 85.0 | 65.0 | 20.0 | 4.0 | 10.0 | 5.0 | 15.0 | 11.0 | 15.0 | 10.0 |
2 | 95.0 | 75.0 | 1.0 | 45.0 | 25.0 | 5.0 | 10.0 | 10.0 | 30.0 | 10.0 |
3 | 75.0 | 25.0 | 10.0 | 10.0 | 45.0 | 10.0 | 10.0 | 10.0 | 15.0 | 8.0 |
4 | 95.2 | 95.0 | 10.0 | 5.0 | 15.0 | 10.0 | 10.0 | 25.0 | 20.0 | 15.0 |
5 | 95.0 | 80.0 | 50.0 | 5.0 | 50.0 | 10.0 | 25.0 | 15.0 | 35.0 | 15.0 |
6 | 95.0 | 65.0 | 50.0 | 5.0 | 50.0 | 5.0 | 65.0 | 7.0 | 50.0 | 7.0 |
7 | 87.0 | 73.0 | 5.0 | 0.0 | 35.0 | 5.0 | 13.6 | 10.0 | 5.0 | 10.0 |
8 | 90.0 | 75.0 | 5.0 | 5.0 | 40.0 | 5.0 | 8.7 | 8.0 | 5.0 | 5.0 |
9 | 93.3 | 86.0 | 10.0 | 5.0 | 26.1 | 20.0 | 15.0 | 15.0 | 8.7 | 5.0 |
10 | 87.5 | 60.0 | 16.7 | 15.0 | 56.5 | 25.0 | 10.0 | 15.0 | 10.0 | 5.0 |
11 | 87.5 | 75.0 | 45.0 | 10.0 | 87.0 | 25.0 | 10.0 | 15.0 | 15.0 | 10.0 |
12 | 92.0 | 85.0 | 43.5 | 10.0 | 90.9 | 25.0 | 18.2 | 15.0 | 10.0 | 10.0 |
Time (h) | Characteristics of Emulsions | Diameter of Drops (µm) | Emulsification Index EI24 (%) | Viscosity Cp | Thermodynamic Stability |
---|---|---|---|---|---|
24 | Big, globose, and heterogeneous droplets | 1–30 | 80 | 90.5 | Unstable |
48 | Big, globose, and heterogeneous droplets | 1–30 | 84 | 87.2 | Unstable |
72 | Small, compact, and homogeneous droplets | 0.5–20 | 90 | 47.0 | Stable |
96 | Small, compact, and homogeneous droplets | 0.3–20 | 92 | 48.0 | Stable |
* SDS | Small and homogeneous droplets | 2.5–12 | 100 | 24.1 | Stable |
Assay | Viscosity Determination (Cp)/Condition | ||||||
---|---|---|---|---|---|---|---|
pH Cp | 2 | 4 | 6 | 8 | 10 | 12 | 14 |
8.20 | 11.00 | 17.00 | 8.30 | 13.50 | 10.30 | 5.40 | |
NaCl (%) Cp | 2 | 4 | 6 | 8 | 10 | 12 | 14 |
20.50 | 79.40 | 13.10 | 7.86 | 38.40 | 30.20 | 30.70 | |
Temperature (°C) Cp | 0 | 5 | 70 | 100 | 120 | ||
15.10 | 12.00 | 12.40 | 16.30 | 7.86 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maia, P.C.V.S.; Santos, V.P.; Fereira, A.S.; Luna, M.A.C.; Silva, T.A.L.; Andrade, R.F.S.; Campos-Takaki, G.M. An Efficient Bioemulsifier-Producing Bacillus subtilis UCP 0146 Isolated from Mangrove Sediments. Colloids Interfaces 2018, 2, 58. https://doi.org/10.3390/colloids2040058
Maia PCVS, Santos VP, Fereira AS, Luna MAC, Silva TAL, Andrade RFS, Campos-Takaki GM. An Efficient Bioemulsifier-Producing Bacillus subtilis UCP 0146 Isolated from Mangrove Sediments. Colloids and Interfaces. 2018; 2(4):58. https://doi.org/10.3390/colloids2040058
Chicago/Turabian StyleMaia, Patrícia C. V. S., Vanessa P. Santos, Adriana S. Fereira, Marcos A. C. Luna, Thayse A. L. Silva, Rosileide F. S. Andrade, and Galba M. Campos-Takaki. 2018. "An Efficient Bioemulsifier-Producing Bacillus subtilis UCP 0146 Isolated from Mangrove Sediments" Colloids and Interfaces 2, no. 4: 58. https://doi.org/10.3390/colloids2040058
APA StyleMaia, P. C. V. S., Santos, V. P., Fereira, A. S., Luna, M. A. C., Silva, T. A. L., Andrade, R. F. S., & Campos-Takaki, G. M. (2018). An Efficient Bioemulsifier-Producing Bacillus subtilis UCP 0146 Isolated from Mangrove Sediments. Colloids and Interfaces, 2(4), 58. https://doi.org/10.3390/colloids2040058