A Unified Framework for Free Vibration Analysis of Variable-Angle Tow Composite Shells with Spatially Varying Curvature
Abstract
1. Introduction
2. Problem Description
2.1. Variable Angle-Tow Composite Shells
2.2. Carrera’s Unified Formulation
2.3. Locking Correction
2.4. Governing Equations
2.5. Acronym System
3. Numerical Results and Discussion
3.1. Toroid
3.2. Ellipsoid
3.3. Hyperboloid
4. Conclusions
- The FSDT model provides accurate results for thin shells (). However, its accuracy diminishes considerably for thicker shells ( and 5), especially at higher frequencies. Despite this, the model is capable of accurately predicting the modal shapes in all cases and offers reduced computational cost due to its consideration of a limited number of variables.
- ESL and LW models accurately predict the fundamental frequencies, regardless of the analysis case or shell thickness. For thick plates (), these models outperform the FSDT in terms of accuracy. However, higher-order models introduce more variables as additional terms in the thickness expansion functions, enriching the solution by capturing more complex displacement field features.
- The differences between the ESL and LW models become more pronounced when analyzing thick, multilayered shells. In such cases, the independent representation of each layer kinematics is crucial for accurately estimating the composite dynamic behavior. For thin shells, both approaches yield results in good agreement with the Abaqus 3D reference model, independent of the expansion order. However, for thicker shells, higher-order polynomials are required to achieve accurate results. The proposed LW and ESL theories (including FSDT) exhibit average frequency shift errors of and , respectively, resulting in an overall mean error of across all proposed models.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Xu, P.; Guo, W.; Yang, L.; Yang, C.; Zhou, S. Crashworthiness analysis and multi-objective optimization of a novel metal/CFRP hybrid friction structures. Struct. Multidiscip. Optim. 2024, 67, 97. [Google Scholar] [CrossRef]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Kraus, H. Thin Elastic Shells: An Introduction to the Theoretical Foundations and the Analysis of Their Static and Dynamic Behavior; John Wiley & Sons: Hoboken, NJ, USA, 1967. [Google Scholar]
- Leissa, A.W. Vibration of Shells; Scientific and Technical Information Office, National Aeronautics and Space Administration: Hampton, VA, USA, 1973. [Google Scholar]
- Bathe, K.-J. Finite Element Procedures; Klaus-Jurgen Bathe: Watertown, MA, USA, 2006. [Google Scholar]
- Washizu, K. Variational Methods in Elasticity and Plasticity; Pergamon Press: Oxford, UK, 1974. [Google Scholar]
- Chung, H. Free vibration analysis of circular cylindrical shells. J. Sound Vib. 1981, 74, 331–350. [Google Scholar] [CrossRef]
- Narita, Y.; Leissa, A. Vibrations of Completely Free Shallow Shells of Curvilinear Planform. J. Appl. Mech. 1986, 53, 647–651. [Google Scholar] [CrossRef]
- Liew, K.M.; Lim, C.W. Vibration of perforated doubly-curved shallow shells with rounded corners. Int. J. Solids Struct. 1994, 31, 1519–1536. [Google Scholar] [CrossRef]
- Chao, C.C.; Tung, T.P. Step pressure and blast responses of clamped orthotropic hemispherical shells. Int. J. Impact Eng. 1989, 8, 191–207. [Google Scholar] [CrossRef]
- Yang, C.; Jin, G.; Zhang, Y.; Liu, Z. A unified three-dimensional method for vibration analysis of the fre-quency-dependent sandwich shallow shells with general boundary conditions. Appl. Math. Model. 2019, 66, 59–76. [Google Scholar] [CrossRef]
- Aksu, T. A finite element formulation for free vibration analysis of shells of general shape. Comput. Struct. 1997, 65, 687–694. [Google Scholar] [CrossRef]
- Chakravorty, D.; Sinha, P.K.; Bandyopadhyay, J.N. Applications of FEM on free and forced vibration of laminated shells. J. Eng. Mech. 1998, 124, 1–8. [Google Scholar] [CrossRef]
- Chaubey, A.K.; Kumar, A.; Chakrabarti, A. Vibration of laminated composite shells with cutouts and con-centrated mass. AIAA J. 2018, 56, 1662–1678. [Google Scholar] [CrossRef]
- Maksymyuk, V.A. Locking phenomenon in computational methods of the shell theory. Int. J. Appl. Mech. 2020, 56, 347–350. [Google Scholar] [CrossRef]
- Bathe, K.-J.; Dvorkin, E.N. A formulation of general shell elements—The use of mixed interpolation of ten-sorial components. Int. J. Numer. Methods Eng. 1986, 22, 697–722. [Google Scholar] [CrossRef]
- Carrera, E. Theories and finite elements for multilayered plates and shells: A unified compact formulation with numerical assessment and benchmarking. Arch. Comput. Methods Eng. 2003, 10, 215–296. [Google Scholar] [CrossRef]
- Carrera, E.; Giunta, G.; Brischetto, S. Hierarchical closed form solutions for plates bent by localized transverse loadings. J. Zhejiang Univ.-Sci. A 2007, 8, 1026–1037. [Google Scholar] [CrossRef]
- Carrera, E.; Campisi, C.; Cinefra, M.; Soave, M. Evaluation of various trough the thickness and curvature approximations for free vibrational analysis of cylindrical and spherical shells. Int. J. Signal Imaging Syst. Eng. 2008, 1, 197. [Google Scholar]
- Giunta, G.; Biscani, F.; Belouettar, S.; Carrera, E. Hierarchical modelling of doubly curved laminated com-posite shells under distributed and localised loadings. Compos. B Eng. 2011, 42, 682–691. [Google Scholar] [CrossRef]
- Giunta, G.; Metla, N.; Belouettar, S.; Ferreira, A.J.M.; Carrera, E. A thermo-mechanical analysis of isotropic and composite beams via collocation with radial basis functions. J. Therm. Stress. 2013, 36, 1169–1199. [Google Scholar] [CrossRef]
- De Pietro, G.; Giunta, G.; Belouettar, S.; Carrera, E. A static analysis of three-dimensional sandwich beam structures by hierarchical finite elements modelling. J. Sandw. Struct. Mater. 2019, 21, 2382–2410. [Google Scholar] [CrossRef]
- Pagani, A.; Valvano, S.; Carrera, E. Analysis of laminated composites and sandwich structures by varia-ble-kinematic MITC9 plate elements. J. Sandw. Struct. Mater. 2018, 20, 4–41. [Google Scholar] [CrossRef]
- Cinefra, M.; Carrera, E. Shell finite elements with different through-the-thickness kinematics for the linear analysis of cylindrical multilayered structures. Int. J. Numer. Meth. Eng. 2013, 93, 160–182. [Google Scholar] [CrossRef]
- Cinefra, M.; Chinosi, C.; Della Croce, L. MITC9 shell elements based on refined theories for the analysis of isotropic cylindrical structures. Int. J. Numer. Meth. Eng. 2013, 20, 91–100. [Google Scholar][Green Version]
- Cinefra, M.; Kumar, S.K.; Carrera, E. MITC9 Shell elements based on RMVT and CUF for the analysis of laminated composite plates and shells. Compos. Struct. 2019, 209, 383–390. [Google Scholar] [CrossRef]
- Carrera, E.; Zozulya, V.V. Carrera unified formulation (CUF) for shells of revolution. I. Higher-order theory. Acta Mech. 2023, 234, 109–136. [Google Scholar] [CrossRef]
- Carrera, E.; Zozulya, V.V. Carrera unified formulation (CUF) for the shells of revolution. II. Navier close form solutions. Acta Mech. 2023, 234, 137–161. [Google Scholar] [CrossRef]
- Carrera, E.; Zozulya, V.V. Carrera unified formulation (CUF) for the shells of revolution. Numerical evaluation. Mech. Adv. Mater. Struct. 2024, 31, 1597–1619. [Google Scholar] [CrossRef]
- Carrera, E.; Nali, P. Multilayered plate elements for the analysis of multifield problems. Finite Elem. Anal. Des. 2010, 46, 732–742. [Google Scholar] [CrossRef]
- Monge, J.C.; Mantari, J.L.; Llosa, M.N.; Hinostroza, M.A. Unified layer-wise model for magneto-electric shells with complex geometry. Eng. Anal. Bound. Elem. 2024, 163, 33–55. [Google Scholar] [CrossRef]
- Carrera, E.; Petrolo, M. Shell Structures: Theory and Applications Volume 4; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Cinefra, M.; Carrera, E. Shell finite elements for the analysis of multifield problems in multilayered composite structures. Appl. Mech. Mater. 2016, 828, 215–236. [Google Scholar] [CrossRef]
- Hyer, M.W.; Charette, R.F. Innovative Design of Composite Structures: The Use of Curvilinear Fiber Format in Composite Structure Design; NASA Langley Research Center: Hampton, VA, USA, 1990. [Google Scholar]
- Gürdal, Z.; Tatting, B.F.; Wu, C.K. Variable stiffness composite panels: Effects of stiffness variation on the in-plane and buckling response. Compos. Part A Appl. Sci. Manuf. 2008, 39, 911–922. [Google Scholar] [CrossRef]
- Tornabene, F.; Fantuzzi, N.; Baciocchi, M. Higher-order structural theories for the static analysis of dou-bly-curved laminated composite panels reinforced by curvilinear fibers. Thin-Walled Struct. 2016, 102, 222–245. [Google Scholar] [CrossRef]
- Sánchez-Majano, A.R.; Azzara, R.; Pagani, A.; Carrera, E. Accurate stress analysis of variable angle tow shells by high-order equivalent-single-layer and lay-er-wise finite element models. Materials 2021, 14, 6486. [Google Scholar] [CrossRef]
- Sciascia, G.; Oliveri, V.; Weaver, P.M. Eigenfrequencies of prestressed variable stiffness composite shells. Compos. Struct. 2021, 270, 114019. [Google Scholar] [CrossRef]
- Daghighi, S.; Rouhi, M.; Zucco, G.; Weaver, P.M. Bend-free design of ellipsoids of revolution using variable stiffness composites. Compos. Struct. 2020, 233, 111630. [Google Scholar] [CrossRef]
- Sciascia, G.; Oliveri, V.; Weaver, P.M. Dynamic analysis of prestressed variable stiffness composite shell structures. Thin-Walled Struct. 2022, 175, 109193. [Google Scholar] [CrossRef]
- Montemurro, M.; Catapano, A. A general b-spline surfaces theoretical framework for optimisation of variable angle-tow laminates. Compos. Struct. 2019, 209, 561–578. [Google Scholar] [CrossRef]
- Montemurro, M.; Catapano, A. On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates. Compos. Struct. 2017, 161, 145–159. [Google Scholar] [CrossRef]
- Liguori, F.S.; Zucco, G.; Madeo, A.; Garcea, G.; Leonetti, L.; Weaver, P.M. An isogeometric framework for the optimal design of variable stiffness shells undergoing large deformations. Int. J. Solids Struct. 2021, 210, 18–34. [Google Scholar] [CrossRef]
- Miao, H.; Jiao, P.; Chang, Q.; Ding, Z.; Chen, Z.; Duan, H. Modeling and optimization of variable angle tow composite underwater cylindrical pressure hull based on isogeometric analysis method. Ocean Eng. 2025, 332, 121382. [Google Scholar] [CrossRef]
- Giunta, G.; Iannotta, D.A.; Montemurro, M. A FEM free vibration analysis of variable stiffness composite plates through hierarchical modeling. Materials 2023, 16, 4643. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Iannotta, D.A.; Giunta, G.; Montemurro, M. A mechanical analysis of variable angle-tow composite plates through variable kinematics models based on Carrera’s unified formulation. Compos. Struct. 2024, 327, 117717. [Google Scholar] [CrossRef]











| Hypothesis | |
|---|---|
| Displacement-strain relations (Equation (18)) | A linear relation between displacement and strain fields is assumed. Hence, strains vary linearly with displacements. |
| Strain-stress relations (Equation (22)) | A linear elastic material behavior is considered, meaning stresses vary linearly with strains according to Hooke’s law. |
| Curvilinear coordinate system | The coordinates and correspond to principal lines of curvature, which means that -constant and -constant curvatures are orthogonal and they form a conjugate system (Equation (11)). |
| Case | |||||
|---|---|---|---|---|---|
| 1, 2, 3 | 50 GPa | 10 GPa | 5 GPa | GPa | 1540 kg/m3 |
| Mode | |||||||
|---|---|---|---|---|---|---|---|
| DOF | |||||||
| ABAQUS 3D | 495,843 | 24.33 | 25.03 | 25.22 | 26.57 | 26.92 | 28.21 |
| 2 × 8 | 765 | 26.15 (7.47) | 26.49 (5.82) | 28.26 (12.06) | 29.63 (11.53) | 31.49 (16.98) | 32.89 (16.61) |
| 4 × 16 | 2673 | 24.66 (1.34) | 25.21 (0.72) | 25.91 (2.74) | 27.22 (2.45) | 27.48 (2.08) | 28.48 (0.96) |
| 6 × 24 | 5733 | 24.50 (0.70) | 25.11 (0.33) | 25.55 (1.32) | 27.04 (1.75) | 27.07 (0.55) | 28.36 (0.53) |
| 8 × 32 | 9945 | 24.47 (0.55) | 25.09 (0.24) | 25.48 (1.03) | 26.95 (1.43) | 27.03 (0.42) | 28.33 (0.44) |
| Mode | |||||||
|---|---|---|---|---|---|---|---|
| DOF | |||||||
| ABAQUS 3D | 495,843 | 29.11 | 29.90 | 32.21 | 34.54 | 37.10 | 37.64 |
| LD4 | 17,199 | 29.14 (0.09) | 29.94 (0.11) | 32.25 (0.14) | 34.58 (0.13) | 37.23 (0.35) | 37.71 (0.19) |
| LD2 | 9555 | 29.16 (0.16) | 29.96 (0.20) | 32.29 (0.26) | 34.632 (0.28) | 37.34 (0.66) | 37.80 (0.44) |
| ED6 | 13,377 | 29.14 (0.09) | 29.94 (0.11) | 32.26 (0.14) | 34.58 (0.13) | 37.23 (0.35) | 37.71 (0.19) |
| ED4 | 9555 | 29.14 (0.10) | 29.94 (0.12) | 32.26 (0.16) | 34.59 (0.15) | 37.25 (0.41) | 37.73 (0.23) |
| ED2 | 5733 | 29.33 (0.78) | 30.16 (0.85) | 32.53 (1.00) | 34.93 (1.15) | 37.94 (2.27) | 38.41 (2.04) |
| FSDT | 3822 | 29.21 (0.35) | 30.06 (0.54) | 32.46 (0.79) | 34.91 (1.08) | 37.91 (2.18) | 38.32 (1.81) |
| Mode | ||||||
|---|---|---|---|---|---|---|
| ABAQUS 3D | 24.33 | 25.03 | 25.22 | 26.57 | 26.92 | 28.21 |
| LD4 | 24.41 (0.31) | 25.07 (0.16) | 25.33 (0.46) | 26.73 (0.61) | 26.98 (0.24) | 28.27 (0.21) |
| LD2 | 24.42 (0.36) | 25.07 (0.18) | 25.35 (0.54) | 26.77 (0.75) | 26.99 (0.27) | 28.28 (0.25) |
| ED6 | 24.41 (0.31) | 25.07 (0.16) | 25.33 (0.46) | 26.73 (0.61) | 26.98 (0.24) | 28.27 (0.22) |
| ED4 | 24.41 (0.32) | 25.07 (0.16) | 25.34 (0.48) | 26.74 (0.64) | 26.98 (0.24) | 28.27 (0.22) |
| ED2 | 24.50 (0.70) | 25.111 (0.33) | 25.55 (1.32) | 27.04 (1.75) | 27.07 (0.55) | 28.36 (0.53) |
| FSDT | 24.45 (0.49) | 25.09 (0.22) | 25.47 (1.02) | 26.95 (1.43) | 27.04 (0.45) | 28.35 (0.49) |
| Mode | ||||||
|---|---|---|---|---|---|---|
| ABAQUS 3D | 8.47 | 9.35 | 9.37 | 9.83 | 10.55 | 11.26 |
| LD4 | 8.51 (0.47) | 9.43 (0.85) | 9.47 (1.14) | 9.91 (0.88) | 10.66 (1.05) | 11.43 (1.52) |
| LD2 | 8.51 (0.47) | 9.43 (0.85) | 9.47 (1.14) | 9.91 (0.88) | 10.66 (1.05) | 11.43 (1.52) |
| ED6 | 8.51 (0.47) | 9.43 (0.85) | 9.47 (1.14) | 9.91 (0.88) | 10.66 (1.05) | 11.43 (1.52) |
| ED4 | 8.51 (0.47) | 9.43 (0.85) | 9.47 (1.14) | 9.91 (0.88) | 10.66 (1.05) | 11.43 (1.52) |
| ED2 | 8.51 (0.48) | 9.43 (0.86) | 9.47 (1.16) | 9.92 (0.89) | 10.66 (1.06) | 11.43 (1.54) |
| FSDT | 8.50 (0.40) | 9.42 (0.75) | 9.46 (1.03) | 9.91 (0.82) | 10.65 (0.96) | 11.42 (1.47) |
| Mode | ||||||
|---|---|---|---|---|---|---|
| ABAQUS 3D | 48.90 | 50.89 | 54.52 | 58.61 | 61.81 | 62.36 |
| LD4 | 48.95 (0.10) | 50.94 (0.10) | 54.57 (0.10) | 58.67 (0.11) | 61.89 (0.12) | 62.48 (0.19) |
| LD2 | 49.034 (0.29) | 51.33 (0.87) | 54.73 (0.39) | 59.01 (0.69) | 62.05 (0.38) | 62.64 (0.44) |
| ED6 | 48.95 (0.11) | 50.95 (0.11) | 54.57 (0.11) | 58.68 (0.12) | 61.90 (0.13) | 62.49 (0.21) |
| ED4 | 48.97 (0.14) | 51.06 (0.32) | 54.61 (0.17) | 58.77 (0.28) | 61.94 (0.21) | 62.53 (0.27) |
| ED2 | 49.55 (1.33) | 52.52 (3.19) | 55.55 (1.89) | 60.08 (2.52) | 62.85 (1.68) | 63.96 (2.56) |
| FSDT | 49.47 (1.18) | 52.56 (3.27) | 55.60 (2.00) | 60.10 (2.55) | 62.85 (1.68) | 64.13 (2.83) |
| Mode | ||||||
|---|---|---|---|---|---|---|
| ABAQUS 3D | 38.38 | 43.29 | 45.61 | 47.37 | 51.96 | 53.35 |
| LD4 | 38.47 (0.22) | 43.33 (0.09) | 45.70 (0.18) | 47.40 (0.08) | 52.00 (0.09) | 53.45 (0.18) |
| LD2 | 38.62 (0.63) | 43.38 (0.20) | 45.86 (0.54) | 47.45 (0.17) | 52.06 (0.19) | 53.62 (0.51) |
| ED6 | 38.47 (0.22) | 43.33 (0.09) | 45.70 (0.19) | 47.41 (0.08) | 52.00 (0.09) | 53.45 (0.19) |
| ED4 | 38.50 (0.30) | 43.34 (0.12) | 45.73 (0.25) | 47.41 (0.10) | 52.01 (0.11) | 53.48 (0.24) |
| ED2 | 39.35 (2.52) | 43.63 (0.79) | 46.63 (2.23) | 47.73 (0.75) | 52.40 (0.85) | 54.47 (2.10) |
| FSDT | 39.37 (2.57) | 43.60 (0.71) | 46.69 (2.35) | 47.74 (0.79) | 52.43 (0.91) | 54.55 (2.24) |
| Mode | ||||||
|---|---|---|---|---|---|---|
| ABAQUS 3D | 9.09 | 10.64 | 13.55 | 14.15 | 17.02 | 17.46 |
| LD4 | 9.12 (0.27) | 10.73 (0.83) | 13.63 (0.64) | 14.25 (0.71) | 17.11 (0.55) | 17.63 (0.93) |
| LD2 | 9.12 (0.27) | 10.73 (0.84) | 13.63 (0.65) | 14.25 (0.72) | 17.11 (0.56) | 17.63 (0.93) |
| ED6 | 9.12 (0.27) | 10.73 (0.83) | 13.63 (0.64) | 14.25 (0.71) | 17.11 (0.55) | 17.63 (0.93) |
| ED4 | 9.12 (0.27) | 10.73 (0.83) | 13.63 (0.64) | 14.25 (0.71) | 17.11 (0.55) | 17.63 (0.93) |
| ED2 | 9.12 (0.30) | 10.73 (0.89) | 13.64 (0.70) | 14.26 (0.76) | 17.12 (0.61) | 17.64 (1.00) |
| FSDT | 9.12 (0.26) | 10.72 (0.73) | 13.63 (0.62) | 14.25 (0.73) | 17.11 (0.56) | 17.63 (0.94) |
| Mode | ||||||
|---|---|---|---|---|---|---|
| ABAQUS 3D | 39.09 | 40.62 | 43.53 | 46.29 | 48.18 | 52.66 |
| LD4 | 39.11 (0.06) | 40.69 (0.19) | 43.56 (0.07) | 46.36 (0.14) | 48.22 (0.08) | 52.70 (0.07) |
| LD2 | 39.17 (0.20) | 40.98 (0.88) | 43.64 (0.26) | 46.60 (0.66) | 48.38 (0.43) | 52.87 (0.40) |
| ED6 | 39.11 (0.07) | 40.70 (0.20) | 43.56 (0.07) | 46.36 (0.14) | 48.22 (0.09) | 52.70 (0.08) |
| ED4 | 39.12 (0.09) | 40.76 (0.36) | 43.58 (0.11) | 46.42 (0.27) | 48.25 (0.15) | 52.75 (0.17) |
| ED2 | 39.51 (1.07) | 41.99 (3.38) | 44.13 (1.38) | 47.43 (2.46) | 49.27 (2.26) | 53.52 (1.64) |
| FSDT | 39.46 (0.96) | 42.01 (3.44) | 44.14 (1.40) | 47.40 (2.40) | 49.39 (2.53) | 53.52 (1.63) |
| Mode | ||||||
|---|---|---|---|---|---|---|
| ABAQUS 3D | 28.96 | 33.90 | 34.55 | 37.88 | 39.43 | 40.93 |
| LD4 | 29.05 (0.32) | 33.99 (0.24) | 34.62 (0.20) | 37.95 (0.17) | 39.51 (0.19) | 40.99 (0.14) |
| LD2 | 29.14 (0.63) | 34.06 (0.47) | 34.68 (0.36) | 37.98 (0.26) | 39.61 (0.44) | 41.02 (0.23) |
| ED6 | 29.06 (0.32) | 33.99 (0.25) | 34.62 (0.20) | 37.95 (0.17) | 39.51 (0.20) | 40.99 (0.15) |
| ED4 | 29.07 (0.38) | 34.00 (0.29) | 34.63 (0.23) | 37.95 (0.19) | 39.53 (0.24) | 40.99 (0.16) |
| ED2 | 29.58 (2.15) | 34.39 (1.44) | 35.04 (1.41) | 38.18 (0.80) | 40.11 (1.72) | 41.26 (0.82) |
| FSDT | 29.57 (2.11) | 34.35 (1.32) | 35.06 (1.48) | 38.17 (0.76) | 40.13 (1.77) | 41.28 (0.86) |
| Mode | ||||||
|---|---|---|---|---|---|---|
| ABAQUS 3D | 7.10 | 7.55 | 9.38 | 10.08 | 11.82 | 12.23 |
| LD4 | 7.11 (0.24) | 7.61 (0.79) | 9.44 (0.62) | 10.16 (0.85) | 11.88 (0.52) | 12.33 (0.85) |
| LD2 | 7.11 (0.25) | 7.61 (0.81) | 9.44 (0.62) | 10.16 (0.85) | 11.88 (0.52) | 12.33 (0.86) |
| ED6 | 7.11 (0.24) | 7.61 (0.79) | 9.44 (0.62) | 10.16 (0.85) | 11.88 (0.52) | 12.33 (0.85) |
| ED4 | 7.11 (0.24) | 7.61 (0.79) | 9.44 (0.62) | 10.16 (0.85) | 11.88 (0.52) | 12.33 (0.85) |
| ED2 | 7.12 (0.27) | 7.62 (0.85) | 9.44 (0.66) | 10.17 (0.90) | 11.88 (0.55) | 12.34 (0.91) |
| FSDT | 7.11 (0.23) | 7.60 (0.65) | 9.43 (0.53) | 10.16 (0.80) | 11.88 (0.49) | 12.33 (0.82) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannotta, D.A.; Giunta, G.; Montemurro, M. A Unified Framework for Free Vibration Analysis of Variable-Angle Tow Composite Shells with Spatially Varying Curvature. J. Compos. Sci. 2025, 9, 672. https://doi.org/10.3390/jcs9120672
Iannotta DA, Giunta G, Montemurro M. A Unified Framework for Free Vibration Analysis of Variable-Angle Tow Composite Shells with Spatially Varying Curvature. Journal of Composites Science. 2025; 9(12):672. https://doi.org/10.3390/jcs9120672
Chicago/Turabian StyleIannotta, Domenico Andrea, Gaetano Giunta, and Marco Montemurro. 2025. "A Unified Framework for Free Vibration Analysis of Variable-Angle Tow Composite Shells with Spatially Varying Curvature" Journal of Composites Science 9, no. 12: 672. https://doi.org/10.3390/jcs9120672
APA StyleIannotta, D. A., Giunta, G., & Montemurro, M. (2025). A Unified Framework for Free Vibration Analysis of Variable-Angle Tow Composite Shells with Spatially Varying Curvature. Journal of Composites Science, 9(12), 672. https://doi.org/10.3390/jcs9120672

