Thermal Influence on the Mechanical Performance and Deformation Characteristics of Symmetric and Asymmetric GFRP Laminates
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Stress-Strain Behavior
3.2. Young’s Modulus
3.3. Failure Modes of the Laminates
3.4. Strain Mapping Using DIC
3.5. Failure Surface Morphology
4. Conclusions
- The tensile tests revealed a greater ultimate tensile strength (286.29 ± 39.64 MPa at 30 °C, reducing to 220.31 ± 19.63 MPa at 150 °C) and higher failure strain (0.0434 at 30 °C, having an optimum value of 0.0463 at 100 °C) in the symmetric lay-up than in the asymmetric lay-up (284.72 ± 28.38 MPa at 30 °C, reducing to 217.97 ± 27.34 MPa at 150 °C, with a failure strain of 0.0345 at 30 °C), indicating better mechanical behavior and heat resistance at higher temperatures.
- The failure behavior exhibited a shift from ductile failure with fiber pull-out over a large area in the symmetric lay-up at 30 °C to brittle failure with very little pull-out and extensive delamination at 150 °C, with the asymmetric lay-up exhibiting some pull-out of the fibers at 30 °C, moving toward brittle failure with little pull-out and high delamination at 150 °C, indicating the influence of the stacking sequence on failure behavior.
- Microstructural findings were confirmed at 30 °C, with the symmetric lay-up exhibiting a considerable length of fiber pull-out and matrix cracking due to excellent interfacial bonding. In contrast, the asymmetric lay-up exhibited a smaller pull-out length and localized matrix cracking, reflecting lower adhesion and a tendency toward brittleness under ambient conditions.
- The deformation analysis verified a homogeneous strain distribution for the symmetric lay-up with an upper strain of 0.0419 and a failure time of 314.25 s versus a nonhomogeneous strain distribution for the asymmetric lay-up with an upper strain of 0.0349 and a failure time of 261.75 s, verifying the greater deformation capacity of the symmetric lay-up and the early failure of the asymmetric lay-up at 30 °C.
- Compared with the symmetric lay-up samples, all the asymmetric lay-up specimens showed lower toughness, energy absorption, and strain uniformity. Overall, symmetric stacking improved the tensile properties, failure resistance, microstructural performance, and deformation behavior of the samples, increasing their durability. In contrast, the structural imbalance in the asymmetric lay-up led to premature failure, necessitating potential reinforcement for high-temperature applications.
- Between 30 °C and 150 °C, the matrix gradually weakened, leading to a shift from ductile failure to brittle failure. This transition, confirmed by microstructural deterioration and strain localization during deformation, highlights the need for temperature-dependent design strategies in GFRP applications exposed to high-temperature conditions. Together, these results highlight the dominant position of the stacking sequence in optimizing GFRP composite performance under changing thermal conditions, offering a basis for designing resilient temperature-resistant structures.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed]
- Nkurunziza, G.; Benmokrane, B.; Debaiky, A.S.; Masmoudi, R. Effect of Sustained Load and Environment on Long-Term Tensile Properties of Glass Fiber-Reinforced Polymer Reinforcing Bars. ACI Struct. J. 2005, 102, 615–621. [Google Scholar]
- Ilyas, R.A.; Sapuan, S.M.; Bayraktar, E.; Hassan, S.A.; Hayeemasae, N.; Atikah, M.S.N.; Shaker, K. Fibre-Reinforced Polymer Composites: Mechanical Properties and Applications. Polymers 2022, 14, 3732. [Google Scholar] [CrossRef] [PubMed]
- Soutis, C. Carbon Fiber Reinforced Plastics in Aircraft Construction. Mater. Sci. Eng. A 2005, 412, 171–176. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; Satheeshkumar, S.; Naveen, J. Glass Fiber-Reinforced Polymer Composites—A Review. J. Reinf. Plast. Compos. 2014, 33, 1258–1275. [Google Scholar] [CrossRef]
- Karbhari, V.M.; Zhao, L. Use of Composites for 21st Century Civil Infrastructure. Comput. Methods Appl. Mech. Eng. 2000, 185, 433–454. [Google Scholar] [CrossRef]
- Azadi, M.; Saeedi, M.; Mokhtarishirazabad, M.; Lopez-Crespo, P. Effects of Loading Rate on Crack Growth Behavior in Carbon Fiber Reinforced Polymer Composites Using Digital Image Correlation Technique. Compos. Part B Eng. 2019, 175, 107161. [Google Scholar] [CrossRef]
- Soutis, C. Fibre Reinforced Composites in Aircraft Construction. Prog. Aerosp. Sci. 2005, 41, 143–151. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Rangappa, S.M.; Siengchin, S. Basalt Fibers: An Environmentally Acceptable and Sustainable Green Material for Polymer Composites. Constr. Build. Mater. 2024, 436, 136834. [Google Scholar] [CrossRef]
- Rami Hamad, J.A.; Megat Johari, M.A.; Haddad, R.H. Mechanical Properties and Bond Characteristics of Different Fiber Reinforced Polymer Rebars at Elevated Temperatures. Constr. Build. Mater. 2017, 142, 521–535. [Google Scholar] [CrossRef]
- Torabizadeh, M.A. Tensile, Compressive and Shear Properties of Unidirectional Glass/Epoxy Composites Subjected to Mechanical Loading and Low Temperature Services. Indian J. Eng. Mater. Sci. 2013, 20, 299–309. [Google Scholar]
- Dutta, P.K.; Hui, D. Creep Rupture of a GFRP Composite at Elevated Temperatures. Comput. Struct. 2000, 76, 153–161. [Google Scholar] [CrossRef]
- Hawileh, R.A.; Abu-Obeidah, A.; Abdalla, J.A.; Al-Tamimi, A. Temperature Effect on the Mechanical Properties of Carbon, Glass and Carbon–Glass FRP Laminates. Constr. Build. Mater. 2015, 75, 342–348. [Google Scholar] [CrossRef]
- Ashrafi, H.; Bazli, M.; Najafabadi, E.P.; Vatani Oskouei, A. The Effect of Mechanical and Thermal Properties of FRP Bars on Their Tensile Performance under Elevated Temperatures. Constr. Build. Mater. 2017, 157, 1001–1010. [Google Scholar] [CrossRef]
- Hajiloo, H.; Green, M.F.; Gales, J. Mechanical Properties of GFRP Reinforcing Bars at High Temperatures. Constr. Build. Mater. 2018, 162, 142–154. [Google Scholar] [CrossRef]
- Bazli, M.; Ashrafi, H.; Oskouei, A.V. Effect of Harsh Environments on Mechanical Properties of GFRP Pultruded Profiles. Compos. Part B Eng. 2016, 99, 203–215. [Google Scholar] [CrossRef]
- Manalo, A.; Maranan, G.; Sharma, S.; Karunasena, W.; Bai, Y. Temperature-Sensitive Mechanical Properties of GFRP Composites in Longitudinal and Transverse Directions: A Comparative Study. Compos. Struct. 2017, 173, 255–267. [Google Scholar] [CrossRef]
- Landesmann, A.; Seruti, C.A.; Batista, E.D.M. Mechanical Properties of Glass Fiber Reinforced Polymers Members for Structural Applications. Mater. Res. 2015, 18, 1372–1383. [Google Scholar] [CrossRef]
- Ou, Y.; Zhu, D.; Zhang, H.; Huang, L.; Yao, Y.; Li, G.; Mobasher, B. Mechanical Characterization of the Tensile Properties of Glass Fiber and Its Reinforced Polymer (GFRP) Composite under Varying Strain Rates and Temperatures. Polymers 2016, 8, 196. [Google Scholar] [CrossRef]
- Zhang, S.; Caprani, C.; Heidarpour, A. Influence of Fibre Orientation on Pultruded GFRP Material Properties. Compos. Struct. 2018, 204, 368–377. [Google Scholar] [CrossRef]
- Wang, H.W.; Zhou, H.W.; Gui, L.L.; Ji, H.W.; Zhang, X.C. Analysis of Effect of Fiber Orientation on Young’s Modulus for Unidirectional Fiber Reinforced Composites. Compos. Part B Eng. 2014, 56, 733–739. [Google Scholar] [CrossRef]
- Asyraf, M.R.M.; Syamsir, A.; Zahari, N.M.; Supian, A.B.M.; Usman, F.; Itam, Z. Effect of Stacking Sequence on Long-Term Creep Performance of Pultruded GFRP Composites. Polymers 2022, 14, 4064. [Google Scholar] [CrossRef]
- Modi, V.; Singh, K.K.; Shrivastava, R. Effect of Stacking Sequence on Interlaminar Shear Strength of Multidirectional GFRP Laminates. Mater. Today Proc. 2020, 22, 2207–2214. [Google Scholar] [CrossRef]
- Shah, D.B.; Patel, K.M.; Joshi, S.J.; Modi, B.A.; Patel, A.I.; Pariyal, V. Thermo-Mechanical Characterization of Carbon Fiber Composites with Different Epoxy Resin Systems. Thermochim. Acta 2019, 676, 39–46. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, J.; Xiao, S.; Li, Y.; Yang, L. Dynamic Tensile Properties of Carbon/Glass Hybrid Fibre Composites under Intermediate Strain Rates via DIC and SEM Technology. Thin-Walled Struct. 2023, 190, 110986. [Google Scholar] [CrossRef]
- Pan, B.; Qian, K.; Xie, H.; Asundi, A. Two-Dimensional Digital Image Correlation for in-Plane Displacement and Strain Measurement: A Review. Meas. Sci. Technol. 2009, 20, 062001. [Google Scholar] [CrossRef]
- Cerbu, C.; Xu, D.; Wang, H.; Roşca, I.C. The Use of Digital Image Correlation in Determining the Mechanical Properties of Materials. IOP Conf. Ser. Mater. Sci. Eng. 2018, 399, 012007. [Google Scholar] [CrossRef]
- Jiang, L.; He, Y.; Wang, D.; Liu, K.; Wu, W. Digital Image Correlation Method for Measuring Thermal Deformation of Composite Materials. In Sixth International Symposium on Precision Mechanical Measurements; SPIE: Guiyang, China, 2013; Volume 8916, pp. 515–520. [Google Scholar] [CrossRef]
- Machello, C.; Bazli, M.; Santos, J.; Rajabipour, A.; Arashpour, M.; Hassanli, R. Tensile Strength Retention of Fibre-Reinforced Polymer Composites Exposed to Elevated Temperatures: A Meta-Analysis Review. Constr. Build. Mater. 2024, 438, 137150. [Google Scholar] [CrossRef]
- Bazli, M.; Abolfazli, M. Mechanical Properties of Fibre Reinforced Polymers under Elevated Temperatures: An Overview. Polymers 2020, 12, 2600. [Google Scholar] [CrossRef]
- Padmaraj, N.H.; Vijaya, K.M.; Dayananda, P. Experimental Study on the Tension-Tension Fatigue Behaviour of Glass/Epoxy Quasi-Isotropic Composites. J. King Saud Univ. Eng. Sci. 2020, 32, 396–401. [Google Scholar] [CrossRef]
- Wen, J.; Wu, Y.; Hou, X.; Yan, M.; Xiao, Y. Effect of High Temperature on Mechanical Properties and Porosity of Carbon Fiber/Epoxy Composites. J. Reinf. Plast. Compos. 2023, 42, 990–1005. [Google Scholar] [CrossRef]
- Daissè, G.; Marcon, M.; Zecchini, M.; Wan-Wendner, R. Cure-Dependent Loading Rate Effects on Strength and Stiffness of Particle-Reinforced Thermoset Polymers. Polymer 2022, 259, 125326. [Google Scholar] [CrossRef]
- Kojnoková, T.; Nový, F.; Markovičová, L. The Study of Chemical and Thermal Influences of the Environment on the Degradation of Mechanical Properties of Carbon Composite with Epoxy Resin. Polymers 2022, 14, 3245. [Google Scholar] [CrossRef]
- Aithal, S.; Hossagadde, P.N.; Kini, M.V.; Pai, D. Durability Study of Quasi-Isotropic Carbon/Epoxy Composites under Various Environmental Conditions. Iran. Polym. J. (Engl. Ed.) 2023, 32, 873–885. [Google Scholar] [CrossRef]
- Singh, K.K.; Singh, N.K.; Jha, R. Analysis of Symmetric and Asymmetric Glass Fiber Reinforced Plastic Laminates Subjected to Low-Velocity Impact. J. Compos. Mater. 2016, 50, 1853–1863. [Google Scholar] [CrossRef]











| Stacking Sequence | Average Thickness (mm) | Density (g/cm3) | Temperature (°C) | Gauge Length (mm) | Strain Rate (mm/min) |
|---|---|---|---|---|---|
| [0°/90°/90°/0°] | 1.21 | 1.37 ± 0.09 | RT | 80 | 2 |
| 50 | |||||
| 100 | |||||
| 150 | |||||
| [0°/90°/0°/90°] | 1.21 | 1.39 ± 0.13 | RT | 80 | 2 |
| 50 | |||||
| 100 | |||||
| 150 |
| Testing Temperature | Stacking Sequence | Young’s Modulus (GPa) | Failure Strain (mm/mm) | Failure Stress (MPa) |
|---|---|---|---|---|
| RT | Symmetric | 12.45 ± 0.93 | 0.0434 | 286.29 ± 39.64 |
| Asymmetric | 12.44 ± 0.67 | 0.0345 | 284.72 ± 28.38 | |
| 50 °C | Symmetric | 11.38 ± 0.64 | 0.0356 | 257.02 ± 28.13 |
| Asymmetric | 10.52 ± 0.53 | 0.0373 | 249.92 ± 21.08 | |
| 100 °C | Symmetric | 10.69 ± 0.58 | 0.0463 | 243.58 ± 21.82 |
| Asymmetric | 10.16 ± 0.84 | 0.0422 | 249.81 ± 32.73 | |
| 150 °C | Symmetric | 9.67 ± 0.29 | 0.0427 | 220.31 ± 19.63 |
| Asymmetric | 9.76 ± 0.97 | 0.0354 | 217.97 ± 27.34 |
| Testing Temperature | Stacking Sequence | Knee Point Strain | Knee Point Stress (MPa) |
|---|---|---|---|
| RT | Symmetric | 0.0260 | 171.77 |
| Asymmetric | 0.0207 | 170.83 | |
| 50 °C | Symmetric | 0.0214 | 154.21 |
| Asymmetric | 0.0224 | 149.95 | |
| 100 °C | Symmetric | 0.0278 | 146.15 |
| Asymmetric | 0.0253 | 149.88 | |
| 150 °C | Symmetric | 0.0256 | 132.19 |
| Asymmetric | 0.0212 | 130.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayyed, J.; Acharya, P.; Hegde, S.; Bolar, G.; Shetty, M.; I. V., T.R.; N. H., P. Thermal Influence on the Mechanical Performance and Deformation Characteristics of Symmetric and Asymmetric GFRP Laminates. J. Compos. Sci. 2025, 9, 636. https://doi.org/10.3390/jcs9110636
Sayyed J, Acharya P, Hegde S, Bolar G, Shetty M, I. V. TR, N. H. P. Thermal Influence on the Mechanical Performance and Deformation Characteristics of Symmetric and Asymmetric GFRP Laminates. Journal of Composites Science. 2025; 9(11):636. https://doi.org/10.3390/jcs9110636
Chicago/Turabian StyleSayyed, Juveriya, Prashantha Acharya, Sriharsha Hegde, Gururaj Bolar, Manjunath Shetty, Thara Reshma I. V., and Padmaraj N. H. 2025. "Thermal Influence on the Mechanical Performance and Deformation Characteristics of Symmetric and Asymmetric GFRP Laminates" Journal of Composites Science 9, no. 11: 636. https://doi.org/10.3390/jcs9110636
APA StyleSayyed, J., Acharya, P., Hegde, S., Bolar, G., Shetty, M., I. V., T. R., & N. H., P. (2025). Thermal Influence on the Mechanical Performance and Deformation Characteristics of Symmetric and Asymmetric GFRP Laminates. Journal of Composites Science, 9(11), 636. https://doi.org/10.3390/jcs9110636

