A Preliminary Investigation on the Thermal Behavior of Polysaccharides-Modified Casein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.3. Methods
3. Results
3.1. Thermogravimetric Analysis: Experimental Results and Kissinger Methods
3.2. Spectroscopic Analysis
3.3. Flammability Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RB | Casein base matrix |
CH10 | Casein with 10 wt% chitosan |
CH20 | Casein with 20 wt% chitosan |
CH30 | Casein with 30 wt% chitosan |
CH40 | Casein with 40 wt% chitosan |
CH50 | Casein with 50 wt% chitosan |
DX10 | Casein with 10 wt% dextrose |
DX20 | Casein with 10 wt% dextrose |
DX30 | Casein with 30 wt% dextrose |
DX40 | Casein with 10 wt% dextrose |
DX50 | Casein with 50 wt% dextrose |
References
- Ministero Della Salute. Formaldeide. 2015. Available online: www.salute.gov.it (accessed on 1 April 2022).
- Smidsrød, O.; Moe, S.; Moe, S.T. Biopolymer Chemistry; Tapir Academic Press: Throndeim, Norway, 2008. [Google Scholar]
- Guo, M.; Wang, G. Milk protein polymer and its application in environmentally safe adhesives. Polymers 2016, 8, 324. [Google Scholar] [CrossRef]
- Fox, P.F.; Kelly, A.L. The caseins. In Proteins in Food Processing; Woodhead Publishing: Sawston, UK, 2004; pp. 29–71. [Google Scholar] [CrossRef]
- Echard, J.; Bertrand, L.; von Bohlen, A.; le Ho, A.; Paris, C.; Bellot-Gurlet, L.; Soulier, B.; Lattuati-Derieux, A.; Thao, S.; Robinet, L. The Nature of the Extraordinary Finish of Stradivari’s Instruments. Angew. Chem. Int. Ed. 2010, 48, 197. [Google Scholar] [CrossRef]
- Dutta, D.; Sit, N. Casein-based films reinforced with bamboo shoot fbers modifed by ultrasound and cellulase. Ind. Crops Prod. 2024, 222, 120112. [Google Scholar] [CrossRef]
- Foqara, M.; Nandi, R.; Amdursky, N. Casein proteins as building blocks for making ion-conductive bioplastics. J. Mater. Chem. A 2022, 10, 14529–14539. [Google Scholar] [CrossRef]
- Guo, M.; Wang, G. Whey protein polymerisation and its applications in environmentally safe adhesives. Int. J. Dairy Technol. 2016, 69, 481–488. [Google Scholar] [CrossRef]
- Salzberg, H.K. Casein glues and adhesives, Second. In Handbook of Adhesion; Van Nostrand Reinhold Company: New York, NY, USA, 1977. [Google Scholar]
- Russo, M.; Langella, A.; Sansone, L.; Ricciardi, M.R. Ricciardi Casein matrix composites reinforced with recycled cellulose and cellulose acetate fbers: Formulation and mechanical performance for sustainable applications. Cellulose 2025, 32, 3761–3776. [Google Scholar] [CrossRef]
- Alongi, J.; Carletto, R.A.; Bosco, F.; Carosio, F.; Di Blasio, A.; Cuttica, F.; Antonucci, V.; Giordano, M.; Malucelli, G. Caseins and hydrophobins as novel green flame retardants for cotton fabrics. Polym. Degrad. Stab. 2014, 99, 111–117. [Google Scholar] [CrossRef]
- U.B.I.C. Consulting. Casein and Caseinates World Market; U.B.I.C. Consulting: Newport Beach, CA, USA, 2015. [Google Scholar]
- Horne, D.S. Casein micelle structure and stability. In Milk Proteins; Elsevier: Amsterdam, The Netherlands, 2020; pp. 213–250. [Google Scholar]
- Chang, I.; Im, J.; Chung, M.K.; Cho, G.C. Bovine casein as a new soil strengthening binder from diary wastes. Constr. Build. Mater. 2018, 160, 1–9. [Google Scholar] [CrossRef]
- Bye, C.N. Casein and Mixed Protein Adhesives. In Handbook of Adhesive; Springer: Boston, MA, USA, 1990; p. 135. [Google Scholar]
- Corwin, F.; White, R.C. Bottle Labeling Adhesive. U.S. Patent US2351109A, 13 June 1944. [Google Scholar]
- Forest Products Laboratory; Forest Service U.S. Department of Agriculture. Casein Glues: Their Manufacture, Preparation, and Application; Report n, 280; Forest Products Laboratory: Madison, WI, USA; U.S. Forest Service Department of Agriculture: Washington, DC, USA, 1967. [Google Scholar]
- Mati-Baouche, N.; Elchinger, P.-H.; de Baynast, H.; Pierre, G.; Delattre, C.; Michaud, P. Chitosan as an adhesive. Eur. Polym. J. 2014, 60, 198–212. [Google Scholar] [CrossRef]
- Kaczmarek, B.; Owczarek, A.; Nadolna, K.; Sionkowska, A. The film-forming properties of chitosan with tannic acid addition. Mater. Lett. 2019, 245, 22–24. [Google Scholar] [CrossRef]
- Lei, Y.; Mao, L.; Yao, J.; Zhu, H. Improved mechanical, antibacterial and UV barrier properties of catechol-functionalized chitosan/polyvinyl alcohol biodegradable composites for active food packaging. Carbohydr. Polym. 2021, 264, 117997. [Google Scholar] [CrossRef]
- Glaser, T.K.; Plohl, O.; Vesel, A.; Ajdnik, U.; Ulrih, N.P.; Hrnčič, M.K.; Fras Zemljič, L. Functionalization of polyethylene (PE) and polypropylene (PP) material using chitosan nanoparticles with incorporated resveratrol as potential active packaging. Materials 2019, 12, 2118. [Google Scholar] [CrossRef]
- Wang, H.; Qian, J.; Ding, F. Emerging chitosan-based films for food packaging applications. J. Agric. Food Chem. 2018, 66, 395–413. [Google Scholar] [CrossRef]
- Xu, X.; Hu, W.; Ke, Q.; Liu, H.; Li, J.; Zhao, Y. Bio-adhesives from unfolded soy protein reinforced by nano-chitosan for sustainable textile industry. Text. Res. J. 2020, 90, 1094–1101. [Google Scholar] [CrossRef]
- Bustamante-Torres, M.; Arcentales-Vera, B.; Estrella-Nuñez, J.; Yánez-Vega, H.; Bucio, E.; Bucio, E. Antimicrobial Activity of Composites-Based on Biopolymers. Macromol 2022, 2, 258–283. [Google Scholar] [CrossRef]
- Ponnusamy, P.G.; Sundaram, J.; Mani, S. Preparation and characterization of citric acid crosslinked chitosan-cellulose nanofibrils composite films for packaging applications. J. Appl. Polym. Sci. 2022, 139, 52017. [Google Scholar] [CrossRef]
- Vrabič-Brodnjak, U. Bio-Based Adhesives Formulated from Tannic Acid, Chitosan, and Shellac for Packaging Materials. Polymers 2023, 15, 1302. [Google Scholar] [CrossRef]
- UL 94; Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances. Underwriters Laboratories LLC: Northbrook, IL, USA, 2013. Available online: https://webstore.ansi.org/standards/ul/ul94ed2023 (accessed on 1 April 2022).
- Mocanu, A.M.; Moldoveanu, C.; Odochian, L.; Paius, C.M. Study on the thermal behavior of casein under nitrogen and air atmosphere by measn of the TG-FTIR technique. Thermichimica Acta 2012, 546, 120–126. [Google Scholar]
- Corazzari, I.; Nisticò, R.; Turci, F.; Faga, M.G.; Franzoso, F.; Tabasso, S.; Magnaca, G. Advanced physic-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym. Degrad. Stab. 2015, 112, 1–9. [Google Scholar] [CrossRef]
- Murugan, E.; Akshata, C.R. Dextrose, maltose and starch guide crystallization of strontium-substituted hydroxyapatite: A comparative study for bone tissue engineering application. Int. J. Biol. Macromol. 2023, 248, 125927. [Google Scholar] [CrossRef]
- Malin, E.L.; Alaimo, M.H.; Brown, E.M.; Aramini, J.M.; Germann, M.W.; Farrell, H.M., Jr.; McSweeney, P.L.H.; Fox, P.F. Solution Structures of Casein Peptides: NMR, FTIR, CD, and Molecular Modeling Studies of as1-Casein, 1–23. J. Protein Chem. 2001, 20, 391–404. [Google Scholar] [CrossRef] [PubMed]
- Oliver, C.M.; Kher, A.; McNaughton, D.; Augustin, M.A. Use of FTIR and mass spectrometry for characterization of glycated caseins. J. Dairy Res. 2009, 76, 105–110. [Google Scholar] [CrossRef] [PubMed]
- ASTM D3801-20a; Standard Test Method for Measuring the Comparative Burning Characteristics of Solid Plastics in a Vertical Position. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d3801-20a.html (accessed on 1 April 2022).
Properties | Details |
---|---|
Appearance | Powdery solid |
Color | Creamy-white |
Odor | Characteristic |
Solubility | Sparingly soluble in water, swelling in water. Insoluble in alcohol, ether. Soluble in solutions of ammonia, borax, caustic alkali, bicarbonates, carbonates, phosphates, other alkali salts. |
Grain size | 90 mesh |
Moisture | 12% max. |
Composition (indicative) | Protein (dry): 90% max. Fat: 1.5% max. Ash: 2.5% max. Acidity: 1% max. |
Components | Mass (Grams) | Percentage (%) | |
---|---|---|---|
Solution 1 | Casein | 30 | 15.38 |
Water | 90 | 46.15 | |
Solution 2 | Lime putty | 45 | 23.08 |
Water | 30 | 15.38 | |
Total Water | 120 | 61.54 |
Temperature Range, °C | Tmax, °C | Weight Residual, % | Maximum Degradation Rate, %/°C |
---|---|---|---|
177–208 | 186.1 ± 0.5 | 93.43 ± 0.2 | 0.1180 |
252–389 | 303.6 ± 0.8 | 84.85 ± 0.4 | 0.2018 |
410–462 | 437.5 ± 0.9 | 67.46 ± 0.3 | 0.1047 |
590–765 | 730.9 ± 0.5 | 49.39 ± 0.1 | 0.1790 |
Temperature Range, °C | E, KJ/mol |
---|---|
250–390 | 120.03 |
390–470 | 115.97 |
550–800 | 132.30 |
Material | Tmax, °C | Maximum Degradation Rate, %/°C | Final Residual at 900 °C |
---|---|---|---|
CH10 | 737.2 ± 0.5 | 0.09366 | 33.74 ± 0.3 |
CH20 | 734.8 ± 0.2 | 0.11141 | 33.15 ± 0.1 |
CH30 | 757.1 ± 0.8 | 0.09332 | 30.87 ± 0.2 |
CH40 | 737.8 ± 0.7 | 0.08546 | 29.46 ± 0.1 |
CH50 | 761.9 ± 0.5 | 0.07258 | 28.07 ± 0.2 |
DX10 | 694.8 ± 0.2 | 0.06851 | 30.62 ± 0.4 |
DX20 | 684.6 ± 0.2 | 0.07948 | 34.39 ± 0.3 |
DX30 | 700.9 ± 0.5 | 0.07226 | 36.97 ± 0.2 |
DX40 | 706.6 ± 0.3 | 0.09081 | 34.78 ± 0.2 |
DX50 | 730.1 ± 0.7 | 0.05932 | 24.34 ± 0.3 |
Band, cm−1 | Assignment (25 °C) |
---|---|
3200–3400 | Stretching O-H e N-H |
1650–1660 | C=O stretching (Amide I) |
1530–1550 | N-H bending + C-N stretching (Amide II) |
1400–1450 | C-H bending e COO− stretching |
1230–1300 | P=O stretching (phosphates) |
1000–1200 | C-O stretching, C-N stretching |
<900 | Fingerprint region |
Sample | t1 (s) | t2 (s) |
---|---|---|
RB | 34.1 | 0 |
CH50 | 33.3 | 0 |
DX50 | 8.02 | 0 |
Group 1 | Group 2 | p-Value |
---|---|---|
Casein | Casein + Chitosan | 0.006 |
Casein | Casein + Dextrose | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricciardi, M.R.; Russo, M.; Antonucci, V.; Affatato, L.; Langella, A. A Preliminary Investigation on the Thermal Behavior of Polysaccharides-Modified Casein. J. Compos. Sci. 2025, 9, 314. https://doi.org/10.3390/jcs9060314
Ricciardi MR, Russo M, Antonucci V, Affatato L, Langella A. A Preliminary Investigation on the Thermal Behavior of Polysaccharides-Modified Casein. Journal of Composites Science. 2025; 9(6):314. https://doi.org/10.3390/jcs9060314
Chicago/Turabian StyleRicciardi, Maria R., Marco Russo, Vincenza Antonucci, Lorena Affatato, and Antonio Langella. 2025. "A Preliminary Investigation on the Thermal Behavior of Polysaccharides-Modified Casein" Journal of Composites Science 9, no. 6: 314. https://doi.org/10.3390/jcs9060314
APA StyleRicciardi, M. R., Russo, M., Antonucci, V., Affatato, L., & Langella, A. (2025). A Preliminary Investigation on the Thermal Behavior of Polysaccharides-Modified Casein. Journal of Composites Science, 9(6), 314. https://doi.org/10.3390/jcs9060314