Damping Behavior of Fiber-Reinforced Concrete: A Comprehensive Review of Mechanisms, Materials, and Dynamic Effects
Abstract
1. Introduction
2. Impact of Fiber Types
2.1. Steel Fibers
2.2. Polypropylene Fibers
2.3. Glass Fibers
2.4. Deepening the Comparative Framework
3. Relationship Between Ductility Index and Damping Ratio
3.1. Ductility Index
3.2. The Effects of Damping Ratio on Energy Dissipation
3.3. Interrelationship
3.4. Summary and Key Insights on the Ductility Index and Damping Ratio
4. Toughness and Damping Ratio in Concrete
4.1. Toughness
4.2. Damping Ratio
4.3. Interrelationship Between Toughness and Damping Ratio
4.4. Comprehensive Section Summaries and Key Insights
5. Dynamic Loading Effects
6. Standardization and Testing Protocols for Damping Ratio Evaluation
6.1. Test Setup
6.1.1. Specimen Preparation
6.1.2. Support and Boundary Conditions
6.1.3. Excitation Method
6.1.4. Measurement Instruments
- Sensors: Accelerometers or displacement sensors placed at key points to capture vibrational response accurately.
- Data Acquisition: High-speed data acquisition system synchronized with the excitation device.
6.2. Testing Procedure
6.2.1. Excitation
6.2.2. Data Recording
6.2.3. Data Analysis
- Extract the free vibration response, typically the logarithmic decrement method or FFT-based modal analysis.
- Calculate the damping ratio (ζ) using the logarithmic decrement.
6.3. Recommendations for Standardization
- Maintain consistent specimen geometry and boundary conditions.
- Use precise, calibrated sensors for response measurement.
- Repeat tests to assess variability and ensure repeatability.
- Document environmental conditions (temperature and humidity) as they may influence damping.
6.4. Contextualizing Damping in Fiber-Reinforced Concrete: Insights from Recent Meta-Analyses and Reviews
7. Main Challenges and Limitations
- Material Compatibility and Durability: The integration of fiber reinforcements such as steel, polypropylene, and glass fibers pose compatibility issues with conventional concrete mixtures. Differences in thermal expansion coefficients and bonding characteristics may lead to durability concerns, affecting the long-term performance of the composite material under cyclic loading.
- Optimal Fiber Content and Distribution: Determining the ideal fiber type, content, and distribution for maximizing damping capacity remains a challenge. Excessive fiber content can lead to workability issues and segregation within the concrete matrix, while insufficient fiber reinforcement may result in suboptimal energy dissipation.
- Effectiveness Under Varying Dynamic Loading Conditions: The damping efficiency of fiber-reinforced concrete depends on the nature and intensity of dynamic loading. While certain fiber compositions may enhance energy dissipation under seismic events, their performance under repeated industrial vibrations or vehicular impacts requires further investigation to establish reliable design guidelines.
- Standardization and Testing Protocols: The absence of universally accepted testing methods for evaluating damping capacity creates difficulties in comparing results across different studies. Variability in experimental setups, loading frequencies, and measurement techniques can lead to inconsistent conclusions regarding the effectiveness of fiber reinforcement strategies.
- Cost and Practical Implementation: The inclusion of specialized fibers and modifications to conventional concrete formulations may increase production costs and complicate large-scale applications. Economic feasibility, along with practical considerations such as mixing, curing, and long-term maintenance, must be carefully assessed to ensure widespread adoption.
- Environmental and Sustainability Concerns: The production and disposal of synthetic fibers, particularly polymers, raise environmental concerns. Research into sustainable alternatives, such as natural fiber reinforcements or recycled materials, is essential to align damping enhancement strategies with sustainable construction practices.
8. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ECC | Engineered cementitious composites |
FRC | Fiber-reinforced concrete |
UHPC | Ultra-high-performance concrete |
References
- Mostafaei, H.; Bahmani, H. Sustainable High-Performance Concrete Using Zeolite Powder: Mechanical and Carbon Footprint Analyses. Buildings 2024, 14, 3660. [Google Scholar] [CrossRef]
- Bahmani, H.; Mostafaei, H.; Santos, P.; Fallah Chamasemani, N. Enhancing the mechanical properties of Ultra-High-Performance Concrete (UHPC) through silica sand replacement with steel slag. Buildings 2024, 14, 3520. [Google Scholar] [CrossRef]
- Bahmani, H.; Mostafaei, H.; Ghiassi, B.; Mostofinejad, D.; Wu, C. A comparative study of calcium hydroxide, calcium oxide, calcined dolomite, and metasilicate as activators for slag-based HPC. Structures 2023, 58, 105653. [Google Scholar] [CrossRef]
- Hajiaghamemar, M.; Mostofinejad, D.; Bahmani, H. A high-strength concrete resistant to elevated temperatures using steel slag aggregates. Struct. Concr. 2023, 24, 3162–3177. [Google Scholar] [CrossRef]
- Gidrão, G.d.M.S.; Krahl, P.A.; Bosse, R.M.; Silvestro, L.; Ribeiro, R.S.; Lima, G.T.d.S.; Carrazedo, R. Internal Damping Ratio of Normal-and High-Strength Concrete Considering Mechanical Damage Evolution. Buildings 2024, 14, 2446. [Google Scholar] [CrossRef]
- Bachmann, H. Vibration Problems in Structures: Practical Guidelines; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Boccaccini, D.N.; Romagnoli, M.; Kamseu, E.; Veronesi, P.; Leonelli, C.; Pellacani, G.C. Determination of thermal shock resistance in refractory materials by ultrasonic pulse velocity measurement. J. Eur. Ceram. Soc. 2007, 27, 1859–1863. [Google Scholar] [CrossRef]
- Pereira, A.H.A.; Fortes, G.M.; Schickle, B.; Tonnesen, T.; Musolino, B.; Maciel, C.D.; Rodrigues, J.d.A. Correlation between changes in mechanical strength and damping of a high alumina refractory castable progressively damaged by thermal shock. Cerâmica 2010, 56, 311–314. [Google Scholar] [CrossRef]
- Curadelli, R.O.; Riera, J.D.; Ambrosini, D.; Amani, M.G. Damage detection by means of structural damping identification. Eng. Struct. 2008, 30, 3497–3504. [Google Scholar] [CrossRef]
- Paultre, P. Dynamics of Structures; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Chopra, A.K. Dynamics of Structures; Pearson Education India: Chennai, India, 2007. [Google Scholar]
- Ewins, D.J. Modal Testing: Theory, Practice and Application; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Riaz, R.D.; Malik, U.J.; Shah, M.U.; Usman, M.; Najam, F.A. Enhancing seismic resilience of existing reinforced concrete building using non-linear viscous dampers: A comparative study. Actuators 2023, 12, 175. [Google Scholar] [CrossRef]
- Modena, C.; Sonda, D.; Zonta, D. Damage localization in reinforced concrete structures by using damping measurements. Key Eng. Mater. 1999, 167, 132–141. [Google Scholar] [CrossRef]
- Liang, C.; Xiao, J.; Wang, Y.; Wang, C.; Mei, S. Relationship between internal viscous damping and stiffness of concrete material and structure. Struct. Concr. 2021, 22, 1410–1428. [Google Scholar] [CrossRef]
- Majka, M.; Hartnett, M. Effects of speed, load and damping on the dynamic response of railway bridges and vehicles. Comput. Struct. 2008, 86, 556–572. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Chang, K.C. Study on damping reduction factor for buildings under earthquake ground motions. J. Struct. Eng. 2003, 129, 206–214. [Google Scholar] [CrossRef]
- Cimellaro, G.P. Simultaneous stiffness–damping optimization of structures with respect to acceleration, displacement and base shear. Eng. Struct. 2007, 29, 2853–2870. [Google Scholar] [CrossRef]
- Lee, C.-H.; Ryu, J.; Kim, D.-H.; Ju, Y.K. Improving seismic performance of non-ductile reinforced concrete frames through the combined behavior of friction and metallic dampers. Eng. Struct. 2018, 172, 304–320. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, J.; Zhang, Y.; Ma, Z. A comparative study of low cyclic loading effects on plastic strain, nonlinear damping, and strength softening in fiber-reinforced recycled aggregate concrete. J. Build. Eng. 2024, 97, 110774. [Google Scholar] [CrossRef]
- Li, Z.; Zhai, D.; Li, J. Seismic behavior of the dune sand concrete beam-column joints under cyclic loading. Structures 2022, 40, 1014–1024. [Google Scholar] [CrossRef]
- Jin, L.; Du, X.; Li, D.; Su, X. Seismic behavior of RC cantilever beams under low cyclic loading and size effect on shear strength: An experimental characterization. Eng. Struct. 2016, 122, 93–107. [Google Scholar] [CrossRef]
- Habib, A.; Yildirim, U.; Eren, O. Seismic behavior and damping efficiency of reinforced rubberized concrete jacketing. Arab. J. Sci. Eng. 2021, 46, 4825–4839. [Google Scholar] [CrossRef]
- Tang, X.; Yan, X. A review on the damping properties of fiber reinforced polymer composites. J. Ind. Text. 2020, 49, 693–721. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, H.; Zhang, J.; Zhang, P. Enhancing concrete performance: A comprehensive review of hybrid fiber reinforced concrete. Structures 2024, 64, 106560. [Google Scholar] [CrossRef]
- Mo, J.; Zeng, L.; Liu, Y.; Ma, L.; Liu, C.; Xiang, S.; Cheng, G. Mechanical properties and damping capacity of polypropylene fiber reinforced concrete modified by rubber powder. Constr. Build. Mater. 2020, 242, 118111. [Google Scholar] [CrossRef]
- Huang, X.; Su, S.; Xu, Z.; Miao, Q.; Li, W.; Wang, L. Advanced composite materials for structure strengthening and resilience improvement. Buildings 2023, 13, 2406. [Google Scholar] [CrossRef]
- Shi, K.; Zhang, M.; Zhang, T.; Li, P.; Zhu, J.; Li, L. Seismic performance of steel fiber reinforced high–strength concrete beam–column joints. Materials 2021, 14, 3235. [Google Scholar] [CrossRef]
- Gomes, A.E.; Gachet, L.A.; Lintz, R.C.C.; de Lnm Melo, M.; Osório, W.R. Hooked-End Steel Fibers Affecting Damping Ratio of Modified Self-Compacting Concrete with Rubber and Marble/Granite Additions. Materials 2024, 17, 5717. [Google Scholar] [CrossRef]
- Gesoglu, M.; Güneyisi, E.; Muhyaddin, G.F.; Asaad, D.S. Strain hardening ultra-high performance fiber reinforced cementitious composites: Effect of fiber type and concentration. Compos. Part B Eng. 2016, 103, 74–83. [Google Scholar] [CrossRef]
- Cai, Z.-W.; Yu, J.-T.; Duan, X.-Z.; Deng, B.-Y.; Lu, Z.-D.; Yu, K.-Q. Enhancing the strain-hardening performance of ultra-high performance concrete by tailoring matrix toughness and fiber parameters. Constr. Build. Mater. 2023, 395, 132335. [Google Scholar] [CrossRef]
- Lu, C.; Yu, J.; Leung, C.K.Y. Tensile performance and impact resistance of Strain Hardening Cementitious Composites (SHCC) with recycled fibers. Constr. Build. Mater. 2018, 171, 566–576. [Google Scholar] [CrossRef]
- Wu, H.; Qin, X.; Huang, X.; Kaewunruen, S. Engineering, mechanical and dynamic properties of basalt fiber reinforced concrete. Materials 2023, 16, 623. [Google Scholar] [CrossRef]
- Wei, H.; Liu, T.; Zhou, A.; Zou, D.; Li, Y. Toughening static and dynamic damping characteristics of ultra-high performance concrete via interfacial modulation approaches. Cem. Concr. Compos. 2023, 136, 104879. [Google Scholar] [CrossRef]
- Chi, L.; Lu, S.; Yao, Y. Damping additives used in cement-matrix composites: A review. Compos. Part B Eng. 2019, 164, 26–36. [Google Scholar] [CrossRef]
- Li, H.; Long, W.-J.; Khayat, K.H. Efficient recycling of waste rubber in a sustainable fiber-reinforced mortar and its damping and energy dissipation capacity. Cem. Concr. Compos. 2023, 138, 104963. [Google Scholar] [CrossRef]
- Liang, C.; Xiao, J.; Wang, C.; Ma, Z. Hysteretic energy and damping variation of recycled aggregate concrete with different cyclic compression loading levels. J. Build. Eng. 2021, 44, 102936. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Li, C. Hysteresis and damping properties of steel and polypropylene fiber reinforced recycled aggregate concrete under uniaxial low-cycle loadings. Constr. Build. Mater. 2022, 319, 126191. [Google Scholar] [CrossRef]
- Elmenshawi, A.; Brown, T. Hysteretic energy and damping capacity of flexural elements constructed with different concrete strengths. Eng. Struct. 2010, 32, 297–305. [Google Scholar] [CrossRef]
- Imanzadeh, S.; Jarno, A.; Hibouche, A.; Bouarar, A.; Taibi, S. Ductility analysis of vegetal-fiber reinforced raw earth concrete by mixture design. Constr. Build. Mater. 2020, 239, 117829. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Z.; Hu, X.; Ouyang, X.; Zhang, Z.; Banthia, N.; Shi, C. Design, production, and properties of high-strength high-ductility cementitious composite (HSHDCC): A review. Compos. Part B Eng. 2022, 247, 110258. [Google Scholar] [CrossRef]
- Ranade, R.; Li, V.C.; Stults, M.D.; Heard, W.F.; Rushing, T.S. Composite Properties of High-Strength, High-Ductility Concrete. ACI Mater. J. 2013, 110, 413–422. [Google Scholar]
- Long, W.-J.; Li, H.-D.; Mei, L.; Li, W.; Xing, F.; Khayat, K.H. Damping characteristics of PVA fiber-reinforced cementitious composite containing high-volume fly ash under frequency-temperature coupling effects. Cem. Concr. Compos. 2021, 118, 103911. [Google Scholar] [CrossRef]
- Oinam, R.M.; Sahoo, D.R.; Sindhu, R. Cyclic response of non-ductile RC frame with steel fibers at beam-column joints and plastic hinge regions. J. Earthq. Eng. 2014, 18, 908–928. [Google Scholar] [CrossRef]
- Yuan, H.; Weijian, Y.; Naito, C.J.; Rui, Z. Seismic performance of precast concrete frames with debonded reinforcement. Mater. Struct. 2018, 51, 47. [Google Scholar] [CrossRef]
- Shabani, K.; Bahmani, M.; Fatehi, H.; Chang, I. Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named serish. Geomech. Eng. 2022, 29, 535–548. [Google Scholar]
- Saffari, R.; Habibagahi, G.; Nikooee, E.; Niazi, A. Biological stabilization of a swelling fine-grained soil: The role of microstructural changes in the shear behavior. Iran. J. Sci. Technol. Trans. Civ. Eng. 2017, 41, 405–414. [Google Scholar] [CrossRef]
- Mostafaei, H.; Bahmani, H.; Mostofinejad, D.; Wu, C. A novel development of HPC without cement: Mechanical properties and sustainability evaluation. J. Build. Eng. 2023, 76, 107262. [Google Scholar] [CrossRef]
- Hajiaghamemar, M.; Mostofinejad, D.; Bahmani, H. High volume of slag and polypropylene fibres in engineered cementitious composites: Microstructure and mechanical properties. Mag. Concr. Res. 2022, 75, 607–624. [Google Scholar] [CrossRef]
- Bahmani, H.; Mostofinejad, D. Comparative analysis of environmental, social, and mechanical aspects of high-performance concrete with calcium oxide-activated slag reinforced with basalt, and recycled PET fibers. Case Stud. Constr. Mater. 2024, 20, e02895. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, R.; Li, F.; Zhou, Z.; Wang, Y.; Zhan, Y.; Shi, X. Seismic performance of bridge piers constructed with PP-ECC at potential plastic hinge regions. Materials 2020, 13, 1865. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Pei, X.; Li, W.; Liu, Y. Mechanical and damping properties of recycled aggregate concrete modified with air-entraining agent and polypropylene fiber. Materials 2020, 13, 2004. [Google Scholar] [CrossRef]
- Bahmani, H.; Mostofinejad, D.; Eftekhar, M.R. A novel eco-friendly thermal-insulating high-performance geopolymer concrete containing calcium oxide-activated materials with waste tire and waste polyethylene terephthalate. Dev. Built Environ. 2024, 18, 100473. [Google Scholar] [CrossRef]
- Reddy, K.G.R.T.; Prakash, D.A. Dynamic analysis on steel fibre concrete beams. Int. J. Civ. Eng. Technol. 2016, 7, 179–184. [Google Scholar]
- Sofuoğlu, M.A.; Çakır, F.H.; Çelikten, S. Influence of steel fiber addition on the vibrational characteristic of high strength cementitious composites. Arab. J. Sci. Eng. 2021, 46, 4677–4685. [Google Scholar] [CrossRef]
- Tang, X.; Yan, X. Acoustic energy absorption properties of fibrous materials: A review. Compos. Part A Appl. Sci. Manuf. 2017, 101, 360–380. [Google Scholar] [CrossRef]
- Afroughsabet, V.; Ozbakkaloglu, T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Constr. Build. Mater. 2015, 94, 73–82. [Google Scholar] [CrossRef]
- Nguyen, H.; Kinnunen, P.; Carvelli, V.; Illikainen, M. Durability of ettringite-based composite reinforced with polypropylene fibers under combined chemical and physical attack. Cem. Concr. Compos. 2019, 102, 157–168. [Google Scholar] [CrossRef]
- Zeng, L.; Xiao, Y.; Chen, Y.; Jin, S.; Xie, W.; Li, X. Seismic damage evaluation of concrete-encased steel frame-reinforced concrete core tube buildings based on dynamic characteristics. Appl. Sci. 2017, 7, 314. [Google Scholar] [CrossRef]
- Lee, K.S.; Choi, J.-I.; Kim, S.-K.; Lee, B.-K.; Hwang, J.-S.; Lee, B.Y. Damping and mechanical properties of composite composed of polyurethane matrix and preplaced aggregates. Constr. Build. Mater. 2017, 145, 68–75. [Google Scholar] [CrossRef]
- Zhang, J.; Li, V.C. Simulation of crack propagation in fiber-reinforced concrete by fracture mechanics. Cem. Concr. Res. 2004, 34, 333–339. [Google Scholar] [CrossRef]
- Kasagani, H.; Rao, C.B.K. Effect of graded fibers on stress strain behaviour of Glass Fiber Reinforced Concrete in tension. Constr. Build. Mater. 2018, 183, 592–604. [Google Scholar] [CrossRef]
- Dehghanpour, H.; Subasi, S.; Guntepe, S.; Emiroglu, M.; Marasli, M. Investigation of fracture mechanics, physical and dynamic properties of UHPCs containing PVA, glass and steel fibers. Constr. Build. Mater. 2022, 328, 127079. [Google Scholar] [CrossRef]
- Milašinović, D.D. Rheological–dynamical analogy: Prediction of damping parameters of hysteresis damper. Int. J. Solids Struct. 2007, 44, 7143–7166. [Google Scholar] [CrossRef]
- Hwang, J.S.; Sheng, L.H. Effective stiffness and equivalent damping of base-isolated bridges. J. Struct. Eng. 1993, 119, 3094–3101. [Google Scholar] [CrossRef]
- Milašinović, D.D. Rheological–dynamical analogy: Prediction of buckling curves of columns. Int. J. Solids Struct. 2000, 37, 3965–4004. [Google Scholar] [CrossRef]
- Milašinović, D.D. Rheological–dynamical analogy: Modeling of fatigue behavior. Int. J. Solids Struct. 2003, 40, 181–217. [Google Scholar] [CrossRef]
- Milašinović, D.D. Rheological–dynamical analogy: Visco-elasto-plastic behavior of metallic bars. Int. J. Solids Struct. 2004, 41, 4599–4634. [Google Scholar] [CrossRef]
- ASTM C1018-97; Structural Test Method for Flexural Toughness and First Crack Strength of Fiber Reinforced Concrete (Using Beam with Third Point Loading). ASTM International: West Conshohocken, PA, USA, 1998.
- Jiao, C.; Ta, J.; Niu, Y.; Meng, S.; Chen, X.-F.; He, S.; Ma, R. Analysis of the flexural properties of ultra-high-performance concrete consisting of hybrid straight steel fibers. Case Stud. Constr. Mater. 2022, 17, e01153. [Google Scholar] [CrossRef]
- Poddaeva, O.; Fedosova, A. Damping capacity of materials and its effect on the dynamic behavior of structures. Review. Energy Rep. 2021, 7, 299–307. [Google Scholar] [CrossRef]
- Mostafaei, H.; Ashoori Barmchi, M.; Bahmani, H. Seismic Resilience and Sustainability: A Comparative Analysis of Steel and Reinforced Structures. Buildings 2025, 15, 1613. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y. Experimental study on performance of rubber particle and steel fiber composite toughening concrete. Constr. Build. Mater. 2017, 146, 267–275. [Google Scholar] [CrossRef]
- Mostofinejad, D.; Aghamohammadi, O.; Bahmani, H.; Ebrahimi, S. Improving thermal characteristics and energy absorption of concrete by recycled rubber and silica fume. Dev. Built Environ. 2023, 16, 100221. [Google Scholar] [CrossRef]
- Aghamohammadi, O.; Mostofinejad, D.; Mostafaei, H.; Abtahi, S.M. Mechanical properties and impact resistance of concrete pavement containing crumb rubber. Int. J. Geomech. 2024, 24, 04023242. [Google Scholar] [CrossRef]
- Chambreuil, C.; Giry, C.; Ragueneau, F.; Léger, P. Identification methods of material-based damping for cracked reinforced concrete beam models. Earthq. Eng. Struct. Dyn. 2023, 52, 2156–2178. [Google Scholar] [CrossRef]
- Salzmann, A. Damping Characteristics of Reinforced and Prestressed Normal- and High-Strength Concrete Beams. Ph.D. Thesis, School of Engineering, Griffith University, Southport, Australia, 2003. [Google Scholar]
- Salzmann, A.; Fragomeni, S.; Loo, Y.C. The damping analysis of experimental concrete beams under free-vibration. Adv. Struct. Eng. 2003, 6, 53–64. [Google Scholar] [CrossRef]
- Jordan, R.W. The effect of stress, frequency, curing, mix and age upon the damping of concrete. Mag. Concr. Res. 1980, 32, 195–205. [Google Scholar] [CrossRef]
- Pan, Z.; Feng, K.N.; Gong, K.; Zou, B.; Korayem, A.H.; Sanjayan, J.; Duan, W.H.; Collins, F. Damping and microstructure of fly ash-based geopolymers. J. Mater. Sci. 2013, 48, 3128–3137. [Google Scholar] [CrossRef]
- Scerrato, D.; Giorgio, I.; Della Corte, A.; Madeo, A.; Limam, A. A micro-structural model for dissipation phenomena in the concrete. Int. J. Numer. Anal. Methods Geomech. 2015, 39, 2037–2052. [Google Scholar] [CrossRef]
- Pyeon, S.; Kim, G.; Lee, S.; Nam, J. Internal curing effect of waste glass beads on high-strength cement composites. Appl. Sci. 2022, 12, 8385. [Google Scholar] [CrossRef]
- Liu, K.; Long, Y.; Chen, L.; Ling, X.; Yu, R.; Shui, Z.; Fei, S.; Yu, W.; Li, C.; Ge, K. Mechanisms of autogenous shrinkage for Ultra-High Performance Concrete (UHPC) prepared with pre-wet porous fine aggregate (PFA). J. Build. Eng. 2022, 54, 104622. [Google Scholar] [CrossRef]
- Ndambi, J.M.; Vantomme, J.; Harri, K. Damage assessment in reinforced concrete beams using eigenfrequencies and mode shape derivatives. Eng. Struct. 2002, 24, 501–515. [Google Scholar] [CrossRef]
- Chakraborty, S.; Islam, M.R.I.; Shaw, A.; Ramachandra, L.S.; Reid, S.R. A computational framework for modelling impact induced damage in ceramic and ceramic-metal composite structures. Compos. Struct. 2017, 164, 263–276. [Google Scholar] [CrossRef]
- Alekseev, K.N.; Zakharov, E.V. Effect of Cyclic Freeze–Thaw on Dynamic Impact Resistance of Fiber-Reinforced Concrete. J. Min. Sci. 2024, 60, 921–927. [Google Scholar] [CrossRef]
- Li, B.; Xu, L.; Chi, Y.; Huang, B.; Li, C. Experimental investigation on the stress-strain behavior of steel fiber reinforced concrete subjected to uniaxial cyclic compression. Constr. Build. Mater. 2017, 140, 109–118. [Google Scholar] [CrossRef]
- Dang, T.K.M.; Nikzad, M.; Arablouei, R.; Masood, S.; Bui, D.-K.; Truong, V.K.; Sbarski, I. Experimental study and predictive modelling of damping ratio in hybrid polymer concrete. Constr. Build. Mater. 2024, 411, 134541. [Google Scholar] [CrossRef]
- Mostafaei, H.; Ghamami, M. State of the Art in Automated Operational Modal Identification: Algorithms, Applications, and Future Perspectives. Machines 2025, 13, 39. [Google Scholar] [CrossRef]
- Mostafaei, H. Modal Identification Techniques for Concrete Dams: A Comprehensive Review and Application. Sci 2024, 6, 40. [Google Scholar] [CrossRef]
- Mostafaei, H.; Mostofinejad, D.; Ghamami, M.; Wu, C. Fully automated operational modal identification of regular and irregular buildings with ensemble learning. Structures 2023, 58, 105439. [Google Scholar] [CrossRef]
- Mostafaei, H.; Mostofinejad, D.; Ghamami, M.; Wu, C. A new approach of ensemble learning in fully automated identification of structural modal parameters of concrete gravity dams: A case study of the Koyna dam. Structures 2023, 50, 255–271. [Google Scholar] [CrossRef]
- Bahmani, H.; Mostafaei, H. Impact of Fibers on the Mechanical and Environmental Properties of High-Performance Concrete Incorporating Zeolite. J. Compos. Sci. 2025, 9, 222. [Google Scholar] [CrossRef]
- Mostafaei, H.; Kelishadi, M.; Bahmani, H.; Wu, C.; Ghiassi, B. Development of sustainable HPC using rubber powder and waste wire: Carbon footprint analysis, mechanical and microstructural properties. Eur. J. Environ. Civ. Eng. 2025, 29, 399–420. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafaei, H.; Bahmani, H.; Mostofinejad, D. Damping Behavior of Fiber-Reinforced Concrete: A Comprehensive Review of Mechanisms, Materials, and Dynamic Effects. J. Compos. Sci. 2025, 9, 254. https://doi.org/10.3390/jcs9060254
Mostafaei H, Bahmani H, Mostofinejad D. Damping Behavior of Fiber-Reinforced Concrete: A Comprehensive Review of Mechanisms, Materials, and Dynamic Effects. Journal of Composites Science. 2025; 9(6):254. https://doi.org/10.3390/jcs9060254
Chicago/Turabian StyleMostafaei, Hasan, Hadi Bahmani, and Davood Mostofinejad. 2025. "Damping Behavior of Fiber-Reinforced Concrete: A Comprehensive Review of Mechanisms, Materials, and Dynamic Effects" Journal of Composites Science 9, no. 6: 254. https://doi.org/10.3390/jcs9060254
APA StyleMostafaei, H., Bahmani, H., & Mostofinejad, D. (2025). Damping Behavior of Fiber-Reinforced Concrete: A Comprehensive Review of Mechanisms, Materials, and Dynamic Effects. Journal of Composites Science, 9(6), 254. https://doi.org/10.3390/jcs9060254