Proving Partial Miscibility in Poly(L-lactic acid)/Ethylene-Vinyl Acetate Copolymer Blends Using the Spherulite Observation Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polymer Blends
2.3. Characterization
3. Results and Discussion
3.1. Thermal Behavior of PLLA:EVA Polymer Blends
3.2. Spherulite Formation and Size Distribution in PLLA:EVA Polymer Blends
3.3. Characterization of Spherulite Formation/Growth Behavior in PLLA:EVA Polymer Blends
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, W.; Shishehbor, M.; Guarín-Zapata, N.; Kirchhofer, N.D.; Li, J.; Cruz, L.; Wang, T.; Bhowmick, S.; Stauffer, D.; Manimunda, P.; et al. A natural impact-resistant bicontinuous composite nanoparticle coating. Nat. Mater. 2020, 19, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Y.; Li, Z.; Li, T.; Niu, C.; Wang, R. Natural composite hydrogel regulated interface polymerization to prepare high performance nanofiltration membranes with wrinkled structure. J. Membr. Sci. 2025, 717, 123567. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Clyne, T.W.; Hull, D. An Introduction to Composite Materials, 3rd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Christensen, R.M. Mechanics of Composite Materials; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Chawla, K.K. Composite Materials: Science and Engineering, 4th ed.; Springer: New York, NY, USA, 2019. [Google Scholar]
- Kelly, A. A Concise Encyclopedia of Composite Materials; Pergamon Press: Oxford, UK, 1989. [Google Scholar]
- Vincent, J.F.V. Structural Biomaterials, 3rd ed.; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Noe, M.M.; Sugawara, A.; Asoh, T.A.; Takashima, Y.; Harada, A.; Uyama, H. Composite hydrogels with host–guest interaction using cellulose nanocrystal as supramolecular filler. Polymer 2023, 277, 125979. [Google Scholar] [CrossRef]
- Li, H.; Dai, X.; Han, X.; Wang, J. Molecular Orientation-Regulated Bioinspired Multilayer Composites with Largely Enhanced Mechanical Properties. ACS Appl. Mater. Interfaces 2023, 15, 21467–21475. [Google Scholar] [CrossRef]
- Ehrburger, P.; Ubbelohde, A.R.J.P.; Scott, R.A.M.; Johnson, J.W.; Richardson, M.O.W.; Watt, W.; Harris, B.; Ham, A.C. Interface in composite materials. Philos. Trans. R. Soc. Lond. A 1980, 294, 495–505. [Google Scholar] [CrossRef]
- Evans, D.F.; Wennerström, H. The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, 2nd ed.; Wiley-VCH: New York, NY, USA, 1999. [Google Scholar]
- Lee, J.H.; Lyu, J.; Kim, M.; Ahn, H.; Lim, S.; Jang, H.W.; Chung, H.-J.; Lee, J.H. Quantitative Determination of Charge Transport Interface at Vertically Phase Separated Soluble Acene/Polymer Blends. Adv. Funct. Mater. 2023, 33, 2215221. [Google Scholar] [CrossRef]
- Xu, J.; Luo, T. Unlocking enhanced thermal conductivity in polymer blends through active learning. npj Comput. Mater. 2024, 10, 74. [Google Scholar] [CrossRef]
- Jayarathna, S.; Andersson, M.; Andersson, R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers 2022, 14, 4557. [Google Scholar] [CrossRef]
- Uramatsu, T.; Morinaga, S.; Shibatsuka, T.; Kawauchi, T. Polymer alloys with high thermal properties consisting of polyfunctional benzoxazine derived from an oligonuclear phenolic compound and bismaleimide. Polym. J. 2024, 56, 1223–1230. [Google Scholar] [CrossRef]
- Sango, T.; Koubaa, A.; Ragoubi, M.; Yemele, M.C.N.; Leblanc, N. Insights into the functionalities of cellulose acetate and microcrystalline cellulose on water absorption, crystallization, and thermal degradation kinetics of a ternary polybutylene succinate-based hybrid composite. Ind. Crops Prod. 2024, 222, 119572. [Google Scholar] [CrossRef]
- Guzel, M.; Torlak, Y.; Choi, H.; Ak, M. Designed hybrid organic−inorganic nanocomposite film based on synergistic effect of conducting polymer and keggin type polyoxometalate clusters. Mater. Res. Bull. 2023, 167, 112406. [Google Scholar] [CrossRef]
- Vargo, E.; Ma, L.; Li, H.; Zhang, Q.; Kwon, J.; Evans, K.M.; Tang, X.; Tovmasyan, V.L.; Jan, J.; Arias, A.C.; et al. Functional composites by programming entropy-driven nanosheet growth. Nature 2023, 623, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Moore, W.J. Physical Chemistry, 5th ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1972. [Google Scholar]
- Agarwal, B.D.; Broutman, L.J. Analysis and Performance of Fiber Composites, 2nd ed.; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Guo, Y.; Deng, J.; Yu, H.; Huang, Y.; He, B. Preparation and properties of self-reinforced polypropylene composites modified with β-nucleating agents. Polymer 2024, 313, 127723. [Google Scholar] [CrossRef]
- Sato, K.; Oaki, Y.; Imai, H. Phase separation of composite materials through simultaneous polymerization and crystallization. NPG Asia Mater. 2017, 9, e377. [Google Scholar] [CrossRef]
- Shang, S.A.; Wang, L.; Yao, J.; Lv, X.; Xu, Y.; Dou, W.; Zhang, H.; Ye, J.; Chen, Y.-C. Characterizing microstructural patterns within the cortico-striato-thalamo-cortical circuit in Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 135, 111116. [Google Scholar] [CrossRef]
- Strobl, G. The Physics of Polymers: Concepts for Understanding Their Structures and Behavior; Springer: Berlin, Germany, 1997. [Google Scholar]
- Liu, M.; Yang, R.; Guo, Z.; Chen, K.; Feng, H.; Lu, H.; Huang, S.; Zhang, M.; Ye, H.; Shui, L. Dynamic photomask directed lithography based on electrically stimulated nematic liquid crystal architectures. Nat. Commun. 2024, 15, 9389. [Google Scholar] [CrossRef]
- Reichmanis, E.; Nalamasu, O.; Houlihan, F.M. Materials Challenges and Alternatives for Advanced Photolithographic Patterning: From 193 to 157 nm and Beyond. MRS Online Proc. Libr. 2000, 636, 521. [Google Scholar] [CrossRef]
- Deng, B.; Wan, G. Technologies for studying phase-separated biomolecular condensates. Adv. Biotechnol. 2024, 2, 10. [Google Scholar] [CrossRef]
- Meyers, M.A.; Sarikaya, M.; Ritchie, R.O. Nano- and Microstructural Design of Advanced Materials; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Harada, K.; Chu, P.; Xu, K.; Fujimori, A. Polypropylene-based nanocomposite with improved mechanical properties: Effect of cellulose nanofiber and polyrotaxane with partial miscibility. Polym. Compos. 2023, 44, 2977–2987. [Google Scholar] [CrossRef]
- Mokoena, L.S.; Mofokeng, J.P. Morphology and thermal properties of poly(lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/graphene oxide polymeric composites. Polym. Eng. Sci. 2024, 64, 5329–5350. [Google Scholar] [CrossRef]
- Prausnitz, J.M.; Lichtenthaler, R.N.; de Azevedo, E.G. Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Xie, Y.; Tan, J.; Fang, S.; Li, T.; Chen, Y.; Li, L.; Chen, N. A biodegradable, osteo-regenerative and biomechanically robust polylactide bone screw for clinical orthopedic surgery. Int. J. Biol. Macromol. 2024, 283, 137477. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yu, J.; Liang, X.; Huang, Z.; Li, J.; Peng, S. Crystallization behaviors regulations and mechanical performances enhancement approaches of polylactic acid (PLA) biodegradable materials modified by organic nucleating agents. Int. J. Biol. Macromol. 2023, 233, 123581. [Google Scholar] [CrossRef] [PubMed]
- Banpean, A.; Sakurai, S. Confined crystallization of Poly(ethylene glycol) in spherulites of Poly(L-lactic acid) in a PLLA/PEG blend. Polymer 2021, 215, 123370. [Google Scholar] [CrossRef]
- Xu, K.; Chu, P.; Rumon, R.H.; Fujimori, A. Enhancing in-plane elasticity of carbon fiber reinforced thermoplastic multilayer films with polyrotaxane and nanocellulose composites. Polym. Compos. 2025, 46, 1–14. [Google Scholar] [CrossRef]
- Jaziri, M.; Kossentini Kallel, T.; Mbarek, S.; Elleuch, B. Morphology development in polyethylene/polystyrene blends: The influence of processing conditions and interfacial modification. Polym. Int. 2005, 54, 1384–1391. [Google Scholar] [CrossRef]
- Yun, X.; Li, X.; Eerdunbayaer; Cheng, P.; Pan, P.; Dong, T. Controllable Poly(L-lactic acid) Soft Film with Respirability and Its Effect on Strawberry Preservation. Polym. Sci. Ser. A 2021, 63, 77–90. [Google Scholar] [CrossRef]
- Righetti, M.C.; Gazzano, M.; Delpouve, N.; Saiter, A. Contribution of the rigid amorphous fraction to physical ageing of semi-crystalline PLLA. Polymer 2017, 125, 241. [Google Scholar] [CrossRef]
- Watson, M.D.; Wagener, K.B. Ethylene/Vinyl Acetate Copolymers via Acyclic Diene Metathesis Polymerization. Examining the Effect of “Long” Precise Ethylene Run Lengths. Macromolecules 2000, 33, 5411–5417. [Google Scholar] [CrossRef]
- Ali, S.J.A.; Rahmatabadi, D.; Baghani, M.; Baniassadi, M. Experimental Evaluation of Mechanical Properties, Thermal Analysis, Morphology, Printability, and Shape Memory Performance of the Novel 3D Printed PETG-EVA Blends. Macromol. Mater. Eng. 2024, 309, 2400069. [Google Scholar] [CrossRef]
- Qi, X.; Dong, Y.; Islam, M.Z.; Zhu, Y.; Fu, Y.; Fu, S.Y. Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber. Compos. Sci. Technol. 2021, 203, 108609. [Google Scholar] [CrossRef]
- Lee, J.H.; Ryu, H.J.; Rejinold, N.S.; Choi, J.Y.; Long, Y.-Z.; Choi, G.; Choy, J.-H. Nano-enhanced thermo-mechanical properties of ethylene vinyl acetate with intumescent agent and organoclays. Appl. Clay Sci. 2024, 262, 107608. [Google Scholar] [CrossRef]
- Ercan, N.; Korkmaz, E. Structural, thermal, mechanical and viscoelastic properties of ethylene vinyl acetate (EVA)/olefin block copolymer (OBC) blends. Mater. Today Commun. 2021, 28, 102634. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Liu, C.; Chen, M.; Che, Q.; Bai, Y.; Zhou, C.; Xu, K. A novel ethylene-vinyl acetate-impact hardening polymers composite with impact-resistance ability, strain-rate sensitivity and enhanced mechanical performance. Mater. Today Commun. 2025, 42, 111423. [Google Scholar] [CrossRef]
- Han, D.H.; Choi, M.C.; Nagappan, S.; Kim, Y.M.; Kim, H.S. Ethylene vinyl acetate (EVA)/poly(lactic acid) (PLA) blends and their foams. Mol. Cryst. Liq. Cryst. 2020, 707, 38–45. [Google Scholar] [CrossRef]
- Sangeetha, V.H.; Valapa, R.B.; Nayak, S.K.; Varghese, T.O. Investigation on the Influence of EVA Content on the Mechanical and Thermal Characteristics of Poly(lactic acid) Blends. J. Polym. Environ. 2018, 26, 1–14. [Google Scholar] [CrossRef]
- El-Taweel, S.H. Synergistic effect of TiO2 nanoparticles and poly (ethylene-co-vinyl acetate) on the morphology and crystallization behavior of polylactic acid. Sci. Rep. 2024, 14, 18142. [Google Scholar] [CrossRef]
- Chu, P.; Nara, C.; Rumon, R.H.; Xu, K.; Fujimori, A. Introduction of organo-modified carbon nanotubes into fluoropolymer-based hybrids containing polyrotaxane and cellulose nanofibers as organic fillers and their drawn orientation effects. Polym. Compos. 2025, 46, 1–13. [Google Scholar] [CrossRef]
- Singla, R.K.; Zafar, M.T.; Maiti, S.N.; Ghosh, A.K. Physical blends of PLA with high vinyl acetate containing EVA and their rheological, thermo-mechanical and morphological responses. Polym. Test. 2017, 63, 398–406. [Google Scholar] [CrossRef]
- Mendoza-Duarte, M.E.; Estrada-Moreno, I.A.; García-Casillas, P.E.; Vega-Rios, A. Stiff-Elongated Balance of PLA-Based Polymer Blends. Polymers 2021, 13, 4279. [Google Scholar] [CrossRef]
- Yoon, J.S.; Oh, S.H.; Kim, M.N.; Chin, I.J.; Kim, Y.H. Thermal and mechanical properties of poly(l-lactic acid)–poly (ethylene-co-vinyl acetate) blends. Polymer 1999, 40, 2303–2312. [Google Scholar] [CrossRef]
- Maeda, M.; Shioda, Y.; Fujimori, A. Creation of Quasi-DNA Origami at the Air/Water Interface Using the Collapsed Mechanism of Langmuir Monolayer. ChemistrySelect 2024, 9, e202400063. [Google Scholar] [CrossRef]
- Yamagishi, Y.; Sakamoto, S.; Hasunuma, Y.; Fujimori, A. Characterization of Langmuir Monolayers for Nanodiamonds Surface-Modified with 12-Hydroxystearyl Chains and the Occurrence of Structural Colors. ChemistrySelect 2024, 9, e202403262. [Google Scholar] [CrossRef]
- Hasunuma, Y.; Sakamoto, S.; Yamagishi, Y.; Fujimori, A. Preparation and Structural Properties of Gel Coating Films Containing Lipophilized Nanocarbon Particles Functionalized with Thixotropic Chains. J. Oleo Sci. 2025, 74, 107–121. [Google Scholar] [CrossRef]
- Singla, R.K.; Maiti, S.N.; Ghosh, A.K. Mechanical, morphological, and solid-state viscoelastic responses of poly(lactic acid)/ethylene-co-vinyl-acetate super-tough blend reinforced with halloysite nanotubes. J. Mater. Sci. 2016, 51, 10278–10292. [Google Scholar] [CrossRef]
- Tábi, T. The application of the synergistic effect between the crystal structure of poly(lactic acid) (PLA) and the presence of ethylene vinyl acetate copolymer (EVA) to produce highly ductile PLA/EVA blends. J. Therm. Anal. Calorim. 2019, 138, 1287–1297. [Google Scholar] [CrossRef]
- Abdel-Kader, M.H.; Alharby, T.S.; Alamri, S.N. Enhancement of structural, morphological, thermal, optical and mechanical characteristics of PVA/PEO blends based on acetate fillers and infrared laser irradiation. Radiat. Phys. Chem. 2025, 229, 112488. [Google Scholar] [CrossRef]
- Otsuki, Y.; Terui, R.; Hoshino, Y.; Suzuki, T.; Shibasaki, Y.; Fujimori, A. Spherulitic Characterization and Hierarchical Structural Evaluation of Azacalixarene-Polyethylene Glycol Copolymers Containing s-Triazine Rings. Macromol. Chem. Phys. 2023, 224, 2300117. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, Y.; Sato, H.; Tsuji, H.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012–8021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumon, R.H.; Nara, C.; Xu, K.; Fujimori, A. Proving Partial Miscibility in Poly(L-lactic acid)/Ethylene-Vinyl Acetate Copolymer Blends Using the Spherulite Observation Method. J. Compos. Sci. 2025, 9, 130. https://doi.org/10.3390/jcs9030130
Rumon RH, Nara C, Xu K, Fujimori A. Proving Partial Miscibility in Poly(L-lactic acid)/Ethylene-Vinyl Acetate Copolymer Blends Using the Spherulite Observation Method. Journal of Composites Science. 2025; 9(3):130. https://doi.org/10.3390/jcs9030130
Chicago/Turabian StyleRumon, Rokibul Hasan, Chisato Nara, Kai Xu, and Atsuhiro Fujimori. 2025. "Proving Partial Miscibility in Poly(L-lactic acid)/Ethylene-Vinyl Acetate Copolymer Blends Using the Spherulite Observation Method" Journal of Composites Science 9, no. 3: 130. https://doi.org/10.3390/jcs9030130
APA StyleRumon, R. H., Nara, C., Xu, K., & Fujimori, A. (2025). Proving Partial Miscibility in Poly(L-lactic acid)/Ethylene-Vinyl Acetate Copolymer Blends Using the Spherulite Observation Method. Journal of Composites Science, 9(3), 130. https://doi.org/10.3390/jcs9030130