Polymer-Derived Carbon Matrix Composites with Boron Nitride Nanotube Reinforcement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Boron Nitride Nanotube and Polymer
2.2. Nanocomposite Preparation
2.3. Materials Characterization
3. Results and Discussion
3.1. Raman Spectroscopy
3.2. X-Ray Diffraction
3.3. SEM
3.4. Physical Properties
3.4.1. Linear Shrinkage
3.4.2. Density
3.5. Mechanical Properties
3.5.1. BNNT Carbon Composite Pyrolyzed at 1200 °C
3.5.2. BNNT Carbon Composite Pyrolyzed at 1500 °C
3.5.3. BNNT Carbon Interfacial Interaction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviation
CVD | Chemical vapor deposition |
PIP | Polymer infiltration and pyrolysis |
CNTs | Carbon nanotubes |
PyC | Pyrolytic carbon |
SiC | Silicon carbide |
CNT/C | Carbon nanotube reinforced carbon matrix |
XRD | X-ray diffraction |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscopy |
THF | Tetrahydrofuran |
PTFE | Polytetrafluoroethylene |
DWNTs | Double-walled carbon nanotubes (DWNTs) |
References
- Taylor, R.; Siva, S.B.V.; Sreekanth, P.S.R. 5.14 Carbon Matrix Composites. In Comprehensive Composite Materials II; Elsevier: Amsterdam, The Netherlands, 2018; pp. 339–378. [Google Scholar] [CrossRef]
- Bian, T.; Guan, Z.; Liu, F. Compressive experiment and numerical simulation of 3D carbon/carbon composite open-hole plates. Arch. Appl. Mech. 2018, 88, 913–932. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Yin, J.; Xiong, X.; Deng, C.; Wu, X. Effect of pyrolytic carbon interface thickness on conductivity and mechanical and wear properties of copper mesh modified carbon/carbon composite. Mater. Des. 2018, 154, 302–311. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, Y.; Suresh, L.; Hao, A.; Bick, M.; Tan, S.C.; Chen, J. Carbon Nanotube Reinforced Strong Carbon Matrix Composites. ACS Nano 2020, 14, 9282–9319. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhang, P.; Zhuang, L.; Zhou, L.; Zhang, J.; Wang, J.; Hou, X.; Riedel, R.; Li, H. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples. J. Mater. Sci. Technol. 2022, 96, 31–68. [Google Scholar] [CrossRef]
- Agarwal, N.; Rangamani, A.; Bhavsar, K.; Virnodkar, S.S.; Fernandes, A.A.A.; Chadha, U.; Srivastava, D.; Patterson, A.E.; Rajasekharan, V. An overview of carbon-carbon composite materials and their applications. Front. Mater. 2024, 11, 1374034. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, P.; Feng, J.; Xie, M.; Zhao, H.; Zhang, X. Characterization and mechanical properties of Cf/ZrB2-SiC composites fabricated by a hybrid technique based on slurry impregnation, polymer infiltration and pyrolysis and low-temperature hot pressing. Ceram. Int. 2019, 45, 5467–5474. [Google Scholar] [CrossRef]
- Fitzer, E.; Huttner, W. Structure and strength of carbon/carbon composites. J. Phys. D Appl. Phys. 1981, 14, 347–371. [Google Scholar] [CrossRef]
- Chao, X.; Qi, L.; Tian, W.; Hou, X.; Ma, W.; Li, H. Numerical evaluation of the influence of porosity on bending properties of 2D carbon/carbon composites. Compos. Part B Eng. 2018, 136, 72–80. [Google Scholar] [CrossRef]
- White, J.L.; Sheaffer, P.M. Pitch-based processing of carbon-carbon composites. Carbon 1989, 27, 697–707. [Google Scholar] [CrossRef]
- Hu, H.-L.; Ko, T.-H.; Kuo, W.-S.; Su, Y.-J. Influence of adding MCMBs into carbon/carbon composites reinforced by PAN Base No-woven carbon fabrics on their microstructure and performances. Mater. Lett. 2005, 59, 2746–2750. [Google Scholar] [CrossRef]
- Manocha, L.M. Introduction of nanostructures in carbon–carbon composites. Mater. Sci. Eng. A 2005, 412, 27–30. [Google Scholar] [CrossRef]
- Ravikumar, N.L.; Kar, K.K.; Sarkar, S.; Sathiyamoorthy, D. Effects of curing agent and carbon black filler loading on carbonization behavior of phenolic-carbon black composites. Polym. Compos. 2010, 31, 2069–2078. [Google Scholar] [CrossRef]
- Ko, T.; Kuo, W.; Han, W.; Day, T. Modification of a carbon/carbon composite with a thermosetting resin precursor as a matrix by the addition of carbon black. J. Appl. Polym. Sci. 2006, 102, 333–337. [Google Scholar] [CrossRef]
- Cai, Y.; Fan, S.; Liu, H.; Zhang, L.; Cheng, L.; Dong, B.; Jiang, J. Microstructures and improved wear resistance of 3D needled C/SiC composites with graphite filler. Compos. Sci. Technol. 2009, 69, 2447–2453. [Google Scholar] [CrossRef]
- Ravikumar, N.L.; Kar, K.K.; Sathiyamoorthy, D. Effects of graphite filler loading and heat treatment temperature on the properties of phenolic resin based carbon–carbon composites. Polym. Compos. 2011, 32, 353–361. [Google Scholar] [CrossRef]
- Li, H.-J.; Tao, J.; Yao, D.-J.; Fu, Q.-G.; Li, K.-Z. Influence of a pre-coated pyrocarbon layer on the microstructure and mechanical properties of ZrC-doped C/C composites. New Carbon Mater. 2015, 30, 372–377. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, L.; Li, H.; He, S.; Tian, X.; Sheng, H.; Song, Q. Microstructure and interlaminar shear property of carbon fiber-SiC nanowire/pyrolytic carbon composites with SiC nanowires growing at different positions. Ceram. Int. 2018, 44, 11448–11455. [Google Scholar] [CrossRef]
- Han, L.; Li, K.; Sun, J.; Song, Q.; Wang, Y. Reinforcing effects of carbon nanotube on carbon/carbon composites before and after heat treatment. Mater. Sci. Eng. A 2018, 735, 10–18. [Google Scholar] [CrossRef]
- Chae, H.G.; Choi, Y.H.; Minus, M.L.; Kumar, S. Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Compos. Sci. Technol. 2009, 69, 406–413. [Google Scholar] [CrossRef]
- Cai, J.; Naraghi, M. The formation of highly ordered graphitic interphase around embedded CNTs controls the mechanics of ultra-strong carbonized nanofibers. Acta Mater. 2019, 162, 46–54. [Google Scholar] [CrossRef]
- Han, Y.; Li, S.; Chen, F.; Zhao, T. Multi-scale alignment construction for strong and conductive carbon nanotube/carbon composites. Mater. Today Commun. 2016, 6, 56–68. [Google Scholar] [CrossRef]
- Scarponi, C. Carbon–carbon composites in aerospace engineering. In Advanced Composite Materials for Aerospace Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 385–412. [Google Scholar] [CrossRef]
- Tank, M.; Sweat, R. Boron Nitride Nanotubes (BNNTs) and BNNT Composites: A Review. Mater. Perform. Charact. 2022, 11, 20220042. [Google Scholar] [CrossRef]
- Anjum, N.; Alsmairat, O.Q.; Liu, Z.; Park, C.; Fay, C.C.; Ke, C. Mechanical characterization of electrospun boron nitride nanotube-reinforced polymer nanocomposite microfibers. J. Mater. Res. 2022, 37, 4594–4604. [Google Scholar] [CrossRef]
- Lu, X.; Nautiyal, P.; Bustillos, J.; Loganathan, A.; Zhang, C.; Chen, Y.; Boesl, B.; Agarwal, A. Hydroxylated boron nitride nanotube-reinforced polyvinyl alcohol nanocomposite films with simultaneous improvement of mechanical and thermal properties. Polym. Compos. 2020, 41, 5182–5194. [Google Scholar] [CrossRef]
- Zhu, G.; Dong, S.; Ni, D.; Xu, C.; Wang, D. Microstructure, mechanical properties and oxidation resistance of SiCf/SiC composites incorporated with boron nitride nanotubes. RSC Adv. 2016, 6, 83482–83492. [Google Scholar] [CrossRef]
- Li, H.; Shahriari, L.; Khandwani, Y.; Talevich, S.; Reyes, A.; Sweat, R.; Mao, K.; Scammell, L.R.; Whitney, R.R.; Park, J.G.; et al. Polymer-Derived Silicon Carbide and Boron Nitride Nanotube Composites with High Thermal Shock Resistance. ACS Appl. Eng. Mater. 2023, 1, 3205–3213. [Google Scholar] [CrossRef]
- Lahiri, D.; Hadjikhani, A.; Zhang, C.; Xing, T.; Li, L.H.; Chen, Y.; Agarwal, A. Boron nitride nanotubes reinforced aluminum composites prepared by spark plasma sintering: Microstructure, mechanical properties and deformation behavior. Mater. Sci. Eng. A 2013, 574, 149–156. [Google Scholar] [CrossRef]
- Bhuiyan, M.H.; Wang, J.; Li, L.H.; Hodgson, P.; Agarwal, A.; Qian, M.; Chen, Y. Boron nitride nanotube reinforced titanium metal matrix composites with excellent high-temperature performance. J. Mater. Res. 2017, 32, 3744–3752. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron Nitride Nanotubes and Nanosheets. ACS Nano 2010, 4, 2979–2993. [Google Scholar] [CrossRef]
- Guan, J.-F.; Zou, J.; Liu, Y.-P.; Jiang, X.-Y.; Yu, J.-G. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid. Ecotoxicol. Environ. Saf. 2020, 201, 110872. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Tang, C.C.; Zhi, C.Y. Boron Nitride Nanotubes. Adv. Mater. 2007, 19, 2413–2432. [Google Scholar] [CrossRef]
- Zhi, C.Y.; Bando, Y.; Terao, T.; Tang, C.C.; Kuwahara, H.; Golberg, D. Chemically Activated Boron Nitride Nanotubes. Chem. Asian J. 2009, 4, 1536–1540. [Google Scholar] [CrossRef] [PubMed]
- Yamakov, V.; Park, C.; Kang, J.H.; Chen, X.; Ke, C.; Fay, C. Piezoelectric and elastic properties of multiwall boron-nitride nanotubes and their fibers: A molecular dynamics study. Comput. Mater. Sci. 2017, 135, 29–42. [Google Scholar] [CrossRef]
- Jurkiewicz, K.; Pawlyta, M.; Zygadło, D.; Chrobak, D.; Duber, S.; Wrzalik, R.; Ratuszna, A.; Burian, A. Evolution of glassy carbon under heat treatment: Correlation structure–mechanical properties. J. Mater. Sci. 2018, 53, 3509–3523. [Google Scholar] [CrossRef]
- Kawamura, K.; Jenkins, G.M. Mechanical properties of glassy carbon fibres derived from phenolic resin. J. Mater. Sci. 1972, 7, 1099–1112. [Google Scholar] [CrossRef]
- Vazquez-Samperio, J.; Acevedo-Peña, P.; Guzmán-Vargas, A.; Reguera, E.; Cordoba-Tuta, E. Incorporation of heteroatoms into reticulated vitreous carbon foams derived from sucrose to improve its energy storage performance. Int. J. Energy Res. 2021, 45, 6383–6394. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Wang, Y.; Wu, Y.; Li, S.; Cao, B.; Qiao, Y.; Ren, G.; Zhou, T.; Chen, Y. Boron-doped polyhedral graphite catalyzed by h-BN via structural induction for lithium storage. Carbon 2024, 226, 119175. [Google Scholar] [CrossRef]
- Lanticse-Diaz, L.J.; Tanabe, Y.; Enami, T.; Nakamura, K.; Endo, M.; Yasuda, E. The effect of nanotube alignment on stress graphitization of carbon/carbon nanotube composites. Carbon 2009, 47, 974–980. [Google Scholar] [CrossRef]
- Brubaker, Z.E.; Langford, J.J.; Kapsimalis, R.J.; Niedziela, J.L. Quantitative analysis of Raman spectral parameters for carbon fibers: Practical considerations and connection to mechanical properties. J. Mater. Sci. 2021, 56, 15087–15121. [Google Scholar] [CrossRef]
- Langner, J.; Bruns, M.; Dixon, D.; Nefedov, A.; Wöll, C.; Scheiba, F.; Ehrenberg, H.; Roth, C.; Melke, J. Surface properties and graphitization of polyacrylonitrile based fiber electrodes affecting the negative half-cell reaction in vanadium redox flow batteries. J. Power Sources 2016, 321, 210–218. [Google Scholar] [CrossRef]
- Ōya, A.; Ōtani, S. Influences of particle size of metal on catalytic graphitization of non-graphitizing carbons. Carbon 1981, 19, 391–400. [Google Scholar] [CrossRef]
- Rand, B.; McEnaney, B. Carbon Binders from Polymeric Resins and Pitch Part I—Pyrolysis Behaviour and structure of the carbons. Br. Ceram. Trans. J. 1985, 84, 157–165. [Google Scholar]
- Popova, A.N. Crystallographic analysis of graphite by X-ray diffraction. Coke Chem. 2017, 60, 361–365. [Google Scholar] [CrossRef]
- Matsui, K.; Lanticse, L.J.; Tanabe, Y.; Yasuda, E.; Endo, M. Stress graphitization of C/C composite reinforced by carbon nanofiber. Carbon 2005, 43, 1577–1579. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, W.; Cheng, L.; Cao, W.; Sain, M.; Tan, J.; Wang, A.; Jia, H. Carbon Fibers with High Electrical Conductivity: Laser Irradiation of Mesophase Pitch Filaments Obtains High Graphitization Degree. ACS Sustain. Chem. Eng. 2020, 8, 17629–17638. [Google Scholar] [CrossRef]
- Jenkins, G.M.; Kawamura, K.; Ban, L.L. Formation and structure of polymeric carbons. Proc. R. Soc. Lond. A 1972, 327, 501–517. [Google Scholar] [CrossRef]
- Papkov, D.; Beese, A.M.; Goponenko, A.; Zou, Y.; Naraghi, M.; Espinosa, H.D.; Saha, B.; Schatz, G.C.; Moravsky, A.; Loutfy, R.; et al. Extraordinary Improvement of the Graphitic Structure of Continuous Carbon Nanofibers Templated with Double Wall Carbon Nanotubes. ACS Nano 2013, 7, 126–142. [Google Scholar] [CrossRef]
- Terrones, M.; Hsu, W.; Terrones, H.; Zhang, J.; Ramos, S.; Hare, J.; Castillo, R.; Prassides, K.; Cheetham, A.; Kroto, H.; et al. Metal particle catalysed production of nanoscale BN structures. Chem. Phys. Lett. 1996, 259, 568–573. [Google Scholar] [CrossRef]
- Zaldivar, R.J.; Rellick, G.S. Some observations on stress graphitization in carbon-carbon composites. Carbon 1991, 29, 1155–1163. [Google Scholar] [CrossRef]
- Vomero, M.; Zucchini, E.; Delfino, E.; Gueli, C.; Mondragon, N.C.; Carli, S.; Fadiga, L.; Stieglitz, T. Glassy Carbon Electrocorticography Electrodes on Ultra-Thin and Finger-Like Polyimide Substrate: Performance Evaluation Based on Different Electrode Diameters. Materials 2018, 11, 2486. [Google Scholar] [CrossRef]
- Choe, C.R.; Lee, K.H.; Yoon, B.I. Effect of processing parameters on the mechanical properties of carbonized phenolic resin. Carbon 1992, 30, 247–249. [Google Scholar] [CrossRef]
- Ko, T.; Kuo, W.; Chang, Y. Microstructural changes of phenolic resin during pyrolysis. J. Appl. Polym. Sci. 2001, 81, 1084–1089. [Google Scholar] [CrossRef]
- Kunte, M.; Chanfón, L.C.; Nimbalkar, S.; Bunnell, J.; Barajas, E.R.; Vazquez, M.E.; Trejo-Rodriguez, D.; Faucher, C.; Smith, S.; Kassegne, S. Insights to Molecular and Bulk Mechanical Properties of Glassy Carbon Through Molecular Dynamics Simulation and Mechanical Tensile Testing. J. Micromech. Microeng. 2024, 34, 085001. [Google Scholar] [CrossRef]
- Zhu, G.; Xue, Y.; Hu, J.; Yang, J.; Zhou, H.; Gao, L.; Shan, Q.; Dong, S. Influence of boron nitride nanotubes on the damage evolution of SiCf/SiC composites. J. Eur. Ceram. Soc. 2018, 38, 4614–4622. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Sahoo, S.; Seikh, A.H.; Mohammed, S.M.A.K.; Sarkar, A.; Alharthi, N. Synthesis, characterization and optical property study of BCNO and BCN related nanopowder. Diam. Relat. Mater. 2019, 92, 235–241. [Google Scholar] [CrossRef]
- Suryamas, A.B.; Munir, M.M.; Ogi, T.; Khairurrijal; Okuyama, K. Intense green and yellow emissions from electrospun BCNO phosphor nanofibers. J. Mater. Chem. 2011, 21, 12629. [Google Scholar] [CrossRef]
- Reyes, A.N.; Saleh, Y.; Gustavsson, J.; Jolowsky, C.N.; Kumar, R.; Treadwell, L.J.; Sweat, R.D. Supersonic hot jet ablative testing and analysis of boron nitride nanotube hybrid composites. Compos. Part B Eng. 2024, 284, 111684. [Google Scholar] [CrossRef]
- Chang, H.; Lu, M.; Arias-Monje, P.J.; Luo, J.; Park, C.; Kumar, S. Determining the Orientation and Interfacial Stress Transfer of Boron Nitride Nanotube Composite Fibers for Reinforced Polymeric Materials. ACS Appl. Nano Mater. 2019, 2, 6670–6676. [Google Scholar] [CrossRef]
- Sinha, S.K.; Kumar, D.; Goel, S.; Patnaik, A. Evaluating the elastic behaviour of boron nitride nanotube (BNNT) reinforced phenolic nanocomposites. Eng. Res. Express 2023, 5, 045003. [Google Scholar] [CrossRef]
BNNT | d002 (Å) | Lc (nm) | N |
---|---|---|---|
0% | 3.312 | 1.15 | 3 |
1% | 3.356 | 1.255 | 4 |
5% | 3.355 | 3.304 | 10 |
BNNTs | BNNT-Carbon Composite | Flexural Strength (MPa) | Flexural Modulus (GPa) | Tensile Strength (MPa) | Tensile Modulus (GPa) | Reference |
---|---|---|---|---|---|---|
50 wt% (Experiment) | Hybrid interlayer BNNT/CF | 493.1 | 41.73 | Reyes et al. [59] | ||
5 wt% (Experiment) | BNNT/PAN fiber | 764 | 17.2 | Chang et al. [60] | ||
6.8 vol% (MD simulation) | BNNT/phenolic resin | 60.79 | Kumar et al. [61] | |||
5 wt% | BNNT/Phenolic derived carbon | 456.6 | 127.7 | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekuase, O.A.; Wu, Q.; Park, J.G.; Cai, J.; Liang, Z.; Yu, Z. Polymer-Derived Carbon Matrix Composites with Boron Nitride Nanotube Reinforcement. J. Compos. Sci. 2025, 9, 83. https://doi.org/10.3390/jcs9020083
Ekuase OA, Wu Q, Park JG, Cai J, Liang Z, Yu Z. Polymer-Derived Carbon Matrix Composites with Boron Nitride Nanotube Reinforcement. Journal of Composites Science. 2025; 9(2):83. https://doi.org/10.3390/jcs9020083
Chicago/Turabian StyleEkuase, Okunzuwa Austine, Qiang Wu, Jin Gyu Park, Jizhe Cai, Zhiyong Liang, and Zhibin Yu. 2025. "Polymer-Derived Carbon Matrix Composites with Boron Nitride Nanotube Reinforcement" Journal of Composites Science 9, no. 2: 83. https://doi.org/10.3390/jcs9020083
APA StyleEkuase, O. A., Wu, Q., Park, J. G., Cai, J., Liang, Z., & Yu, Z. (2025). Polymer-Derived Carbon Matrix Composites with Boron Nitride Nanotube Reinforcement. Journal of Composites Science, 9(2), 83. https://doi.org/10.3390/jcs9020083