Cross-Linked Biocomposites with Both Matrix and Fillers Made from Soy-Derived Ingredients
Abstract
1. Introduction
2. Materials and Methods
Preparation and Characterization of Thermoset Biocomposites
3. Results and Discussion
3.1. Modification of Soybean Hull and Soybean Meal by Grafted Plant Oil-Based Polymers
3.2. Preparation of Thermoset Biocomposites and Their Appearance
3.3. Thermomechanical Characterization of Thermoset Biocomposites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Andrew, J.J.; Dhakal, H. Sustainable biobased composites for advanced applications: Recent trends and future opportunities—A critical review. Compos. Part C Open Access 2022, 7, 100220. [Google Scholar]
- Marais, S.; Gouanvé, F.; Bonnesoeur, A.; Grenet, J.; Poncin-Epaillard, F.; Morvan, C.; Métayer, M. Unsaturated polyester composites reinforced with flax fibers: Effect of cold plasma and autoclave treatments on mechanical and permeation properties. Compos. Part A Appl. Sci. Manuf. 2005, 36, 975–986. [Google Scholar] [CrossRef]
- Sharma, A.K.; Bhandari, R.; Aherwar, A.; Rimašauskienė, R. Matrix materials used in composites: A comprehensive study. Mater. Today Proc. 2020, 21, 1559–1562. [Google Scholar] [CrossRef]
- Yu, T.; Jiang, N.; Li, Y. Study on short ramie fiber/poly (lactic acid) composites compatibilized by maleic anhydride. Compos. Part A Appl. Sci. Manuf. 2014, 64, 139–146. [Google Scholar] [CrossRef]
- Bhatia, G.S.; Andrew, J.J.; Arockiarajan, A. Experimental investigation on compressive behaviour of different patch–parent layup configurations for repaired carbon/epoxy composites. J. Compos. Mater. 2019, 53, 3269–3279. [Google Scholar] [CrossRef]
- Dicker, M.P.; Duckworth, P.F.; Baker, A.B.; Francois, G.; Hazzard, M.K.; Weaver, P.M. Green composites: A review of material attributes and complementary applications. Compos. Part A Appl. Sci. Manuf. 2014, 56, 280–289. [Google Scholar] [CrossRef]
- Jiang, L.; Wolcott, M.P.; Zhang, J. Study of biodegradable polylactide/poly (butylene adipate-co-terephthalate) blends. Biomacromolecules 2006, 7, 199–207. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, L.; Zhu, L.; Jane, J.L.; Mungara, P. Morphology and Properties of Soy Protein and Polylactide Blends. Biomacromolecules 2006, 7, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Huda, M.; Drzal, L.; Misra, M.; Mohanty, A. Wood-fiber-reinforced poly (lactic acid) composites: Evaluation of the physicomechanical and morphological properties. J. Appl. Polym. Sci. 2006, 102, 4856–4869. [Google Scholar] [CrossRef]
- Ferreira, B.; Zavaglia, C.; Duek, E. Films of PLLA/PHBV: Thermal, morphological, and mechanical characterization. J. Appl. Polym. Sci. 2002, 86, 2898–2906. [Google Scholar] [CrossRef]
- Iannace, S.; Ambrosio, L.; Huang, S.; Nicolais, L. Poly (3-hydroxybutyrate)-co-(3-hydroxyvalerate)/poly-L-lactide blends: Thermal and mechanical properties. J. Appl. Polym. Sci. 1994, 54, 1525–1535. [Google Scholar] [CrossRef]
- Nanda, M.R.; Misra, M.; Mohanty, A.K. The effects of process engineering on the performance of PLA and PHBV blends. Macromol. Mater. Eng. 2011, 296, 719–728. [Google Scholar] [CrossRef]
- Nanda, M.R.; Misra, M.; Mohanty, A.K. Mechanical Performance of Soy-Hull-Reinforced Bioplastic Green Composites: A Comparison with Polypropylene Composites. Macromol. Mater. Eng. 2012, 297, 184–194. [Google Scholar] [CrossRef]
- Richards, E.; Rizvi, R.; Chow, A.; Naguib, H. Biodegradable composite foams of PLA and PHBV using subcritical CO2. J. Polym. Environ. 2008, 16, 258–266. [Google Scholar] [CrossRef]
- Gamstedt, E.; Nygård, P.; Lindström, M. Transfer of knowledge from papermaking to manufacture of composite materials. In Proceedings of the 3rd Wood Fibre Polymer Composites International Symposium, Bordeaux, France, 26–27 March 2007; p. 12. [Google Scholar]
- Migneault, S.; Koubaa, A.; Erchiqui, F.; Chaala, A.; Englund, K.; Wolcott, M.P. Effects of processing method and fiber size on the structure and properties of wood–plastic composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 80–85. [Google Scholar] [CrossRef]
- Wolcott, M.P.; Englund, K. A technology review of wood-plastic composites. In Proceedings of the 33rd International Particleboard/Composite Materials Symposium, Pullman, WA, USA, 13–15 April 1999; Washington State University: Pullman, WA, USA, 1999; pp. 103–111. [Google Scholar]
- Taj, S.; Munawar, M.A.; Khan, S. Natural fiber-reinforced polymer composites. Proc.-Pak. Acad. Sci. 2007, 44, 129. [Google Scholar]
- Vinod, A.; Sanjay, M.; Suchart, S.; Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Bharath, K.; Manjunatha, G.; Santhosh, K. Failure analysis and the optimal toughness design of sheep–wool reinforced epoxy composites. In Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; Elsevier: Amsterdam, The Netherlands, 2019; pp. 97–107. [Google Scholar]
- Huda, S.; Yang, Y. Feather fiber reinforced light-weight composites with good acoustic properties. J. Polym. Environ. 2009, 17, 131–142. [Google Scholar] [CrossRef]
- Sadeghi, S.; Dadashian, F.; Eslahi, N. Recycling chicken feathers to produce adsorbent porous keratin-based sponge. Int. J. Environ. Sci. Technol. 2019, 16, 1119–1128. [Google Scholar] [CrossRef]
- Chen, F.; Liu, L.; Cooke, P.H.; Hicks, K.B.; Zhang, J. Performance enhancement of poly (lactic acid) and sugar beet pulp composites by improving interfacial adhesion and penetration. Ind. Eng. Chem. Res. 2008, 47, 8667–8675. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Chopped glass and recycled newspaper as reinforcement fibers in injection molded poly (lactic acid)(PLA) composites: A comparative study. Compos. Sci. Technol. 2006, 66, 1813–1824. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly (lactic acid)(PLA) and kenaf fibers. Compos. Sci. Technol. 2008, 68, 424–432. [Google Scholar] [CrossRef]
- Plackett, D.; Andersen, T.L.; Pedersen, W.B.; Nielsen, L. Biodegradable composites based on L-polylactide and jute fibres. Compos. Sci. Technol. 2003, 63, 1287–1296. [Google Scholar] [CrossRef]
- Shibata, M.; Ozawa, K.; Teramoto, N.; Yosomiya, R.; Takeishi, H. Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol. Mater. Eng. 2003, 288, 35–43. [Google Scholar] [CrossRef]
- Ahankari, S.S.; Mohanty, A.K.; Misra, M. Mechanical behaviour of agro-residue reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate),(PHBV) green composites: A comparison with traditional polypropylene composites. Compos. Sci. Technol. 2011, 71, 653–657. [Google Scholar] [CrossRef]
- Singh, S.; Mohanty, A.K.; Sugie, T.; Takai, Y.; Hamada, H. Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos. Part A Appl. Sci. Manuf. 2008, 39, 875–886. [Google Scholar] [CrossRef]
- Jawaid, M.; Khalil, H.A. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr. Polym. 2011, 86, 1–18. [Google Scholar] [CrossRef]
- Stamboulis, A.; Baillie, C.; Peijs, T. Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1105–1115. [Google Scholar] [CrossRef]
- Cao, X.V.; Ismail, H.; Rashid, A.A.; Takeichi, T.; Vo-Huu, T. Maleated natural rubber as a coupling agent for recycled high density polyethylene/natural rubber/kenaf powder biocomposites. Polym.-Plast. Technol. Eng. 2012, 51, 904–910. [Google Scholar] [CrossRef]
- Huda, M.S.; Drzal, L.T.; Mohanty, A.K.; Misra, M. Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos. Interfaces 2008, 15, 169–191. [Google Scholar] [CrossRef]
- Saenghirunwattana, P.; Noomhorm, A.; Rungsardthong, V. Mechanical properties of soy protein based “green” composites reinforced with surface modified cornhusk fiber. Ind. Crops Prod. 2014, 60, 144–150. [Google Scholar] [CrossRef]
- Laszlo, J.A. Mineral binding properties of soy hull. Modeling mineral interactions with an insoluble dietary fiber source. J. Agric. Food Chem. 1987, 35, 593–600. [Google Scholar] [CrossRef]
- Suszkiw, J. Soybean Hulls Eyed for Wastewater Filtering; Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 2001. Available online: https://www.ars.usda.gov/news-events/news/research-news/2001/soybean-hulls-eyed-for-wastewater-filtering/ (accessed on 24 February 2025).
- Suszkiw, J. A Purrr-Fect Use for Soy Waste? Agricultural Research Service, U.S. Department of Agriculture: Washington, DC, USA, 2023. Available online: https://www.ars.usda.gov/news-events/news/research-news/2023/a-purrr-fect-use-for-soy-waste/ (accessed on 24 February 2025).
- Sessa, D.J. Processing of soybean hulls to enhance the distribution and extraction of value-added proteins. J. Sci. Food Agric. 2004, 84, 75–82. [Google Scholar] [CrossRef]
- Quirino, R.L.; Larock, R.C. Synthesis and properties of soy hull-reinforced biocomposites from conjugated soybean oil. J. Appl. Polym. Sci. 2009, 112, 2033–2043. [Google Scholar] [CrossRef]
- Julson, J.L.; Subbarao, G.; Stokke, D.; Gieselman, H.H.; Muthukumarappan, K. Mechanical properties of biorenewable fiber/plastic composites. J. Appl. Polym. Sci. 2004, 93, 2484–2493. [Google Scholar] [CrossRef]
- Ibáñez, M.; De Blas, C.; Cámara, L.; Mateos, G. Chemical composition, protein quality and nutritive value of commercial soybean meals produced from beans from different countries: A meta-analytical study. Anim. Feed Sci. Technol. 2020, 267, 114531. [Google Scholar]
- Gautam, S.; Sharma, B.; Jain, P. Green Natural Protein Isolate based composites and nanocomposites: A review. Polym. Test. 2021, 99, 106626. [Google Scholar] [CrossRef]
- Li, F.; Liu, T.; Gu, W.; Gao, Q.; Li, J.; Shi, S.Q. Bioinspired super-tough and multifunctional soy protein-based material via a facile approach. Chem. Eng. J. 2021, 405, 126700. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Li, X.; Luo, J.; Gao, Q.; Li, J. “Green” bio-thermoset resins derived from soy protein isolate and condensed tannins. Ind. Crops Prod. 2017, 108, 363–370. [Google Scholar]
- Luo, J.; Li, X.; Zhang, H.; Gao, Q.; Li, J. Properties of a soybean meal-based plywood adhesive modified by a commercial epoxy resin. Int. J. Adhes. Adhes. 2016, 71, 99–104. [Google Scholar] [CrossRef]
- Demchuk, Z.; Shevchuk, O.; Tarnavchyk, I.; Kirianchuk, V.; Kohut, A.; Voronov, S.; Voronov, A. Free radical polymerization behavior of the vinyl monomers from plant oil triglycerides. ACS Sustain. Chem. Eng. 2016, 4, 6974–6980. [Google Scholar] [CrossRef]
- Demchuk, Z.; Shevchuk, O.; Tarnavchyk, I.; Kirianchuk, V.; Lorenson, M.; Kohut, A.; Voronov, S.; Voronov, A. Free-radical copolymerization behavior of plant-oil-based vinyl monomers and their feasibility in latex synthesis. ACS Omega 2016, 1, 1374–1382. [Google Scholar] [CrossRef]
- Demchuk, Z.; Kirianchuk, V.; Kingsley, K.; Voronov, S.; Voronov, A. Plasticizing and hydrophobizing effect of plant oil based acrylic monomers in latex copolymers with styrene and methyl methacrylate. J. Theor. Appl. Nanotechnol. 2018, 6, 29–37. [Google Scholar]
- Demchuk, Z.; Kohut, A.; Voronov, S.; Voronov, A. Versatile platform for controlling properties of plant oil-based latex polymer networks. ACS Sustain. Chem. Eng. 2018, 6, 2780–2786. [Google Scholar] [CrossRef]
- Stamm, M. Polymer Surfaces and Interfaces. In Characterization, Modification and Applications; Springer: Berlin, Germany, 2008. [Google Scholar] [CrossRef]
- Wang, H.; Dong, W.; Li, Y. Compatibilization of Immiscible Polymer Blends Using in Situ Formed Janus Nanomicelles by Reactive Blending. ACS Macro Lett. 2015, 4, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Loi, J.; Delgado, P.; Topolkaraev, V.; McEneany, R.J.; Macosko, C.W.; Hillmyer, M.A. Reactive Compatibilization of Polylactide/Polypropylene Blends. Ind. Eng. Chem. Res. 2015, 54, 6108–6114. [Google Scholar] [CrossRef]
- Detyothin, S.; Selke, S.E.M.; Narayan, R.; Rubino, M.; Auras, R.A. Effects of molecular weight and grafted maleic anhydride of functionalized polylactic acid used in reactive compatibilized binary and ternary blends of polylactic acid and thermoplastic cassava starch. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Dong, W.; Wang, H.; He, M.; Ren, F.; Wu, T.; Zheng, Q.; Li, Y. Synthesis of Reactive Comb Polymers and Their Applications as a Highly Efficient Compatibilizer in Immiscible Polymer Blends. Ind. Eng. Chem. Res. 2015, 54, 2081–2089. [Google Scholar] [CrossRef]
- Eklind, H.; Schantz, S.; Maurer, F.H.; Jannasch, P.; Wesslén, B. Characterization of the Interphase in PPO/PMMA Blends Compatibilized by P(S-g-EO). Macromolecules 1996, 29, 984–992. [Google Scholar] [CrossRef]
- Wang, H.; Fu, Z.; Dong, W.; Li, Y.; Li, J. Formation of Interfacial Janus Nanomicelles by Reactive Blending and Their Compatibilization Effects on Immiscible Polymer Blends. J. Phys. Chem. B 2016, 120, 9240–9252. [Google Scholar] [CrossRef]
- Domnich, B.; Lynch, H.; Voronov, A. Effect of molecular weight and its modality on pressure-sensitive adhesives behavior of plant oil-based latexes. Int. J. Adhes. Adhes. 2024, 128, 103574. [Google Scholar] [CrossRef]
- Polunin, Y.; Domnich, B.; Tiwari, S.; Thorat, S.; Sibi, M.; Voronov, A. Free radical (Co)Polymerization of aromatic vinyl monomers derived from vanillin. Eur. Polym. J. 2023, 201, 112546. [Google Scholar] [CrossRef]
- Amrishraj, D.; Senthilvelan, T. Acrylonitrile butadiene styrene composites reinforced with nanozirconia and PTFE: Mechanical and thermal behavior. Polym. Compos. 2018, 39, E1520–E1530. [Google Scholar] [CrossRef]
- Balachandran, M.; Bhagawan, S.S.; Meera Balachandran, S.S.B. Studies on acrylonitrile—Butadiene copolymer (NBR) layered silicate composites: Mechanical and viscoelastic properties. J. Compos. Mater. 2011, 45, 2011–2022. [Google Scholar] [CrossRef]










| Sample | Theoretical Filler Content in Composite, wt.% | Filler Content in Composite After Grafting, wt.% | Monomer Conversion in Grafting, % |
|---|---|---|---|
| polyHOSBM | - | - | 67.5 |
| SH 12.5% | SH, 9.1% | 12.4% | 70.8 |
| SH 25% | SH, 16.7% | 24.6% | 61.3 |
| SH 35% | SH, 25.0% | 35.1% | 61.7 |
| SM 12.5% | SM, 9.1% | 12.7% | 68.4 |
| SH:SM (1:1) 12.5% | SH + SM, 9.1% | 12.8% | 68.0 |
| SH + SM mix (1:1) 12.5% | SH + SM, 9.1% | 12.5% | - |
| Sample | 1st Peak | 2nd Peak | ||||
|---|---|---|---|---|---|---|
| Mn | Mw | PDI | Mn | Mw | PDI | |
| polyHOSBM | 28,300 | 76,400 | 2.7 | 590,000 | 844,000 | 1.4 |
| SH 12.5% | 25,400 | 64,500 | 2.5 | 458,100 | 645,100 | 1.4 |
| SH 25% | 24,100 | 66,200 | 2.7 | 453,100 | 611,700 | 1.3 |
| SH 35% | 19,500 | 54,000 | 2.8 | 420,400 | 586,400 | 1.4 |
| SM 12.5% | 25,800 | 73,400 | 2.8 | 536,700 | 726,500 | 1.4 |
| SH:SM (1:1) 12.5% | 23,000 | 54,700 | 2.4 | 333,000 | 453,700 | 1.4 |
| SH + SM mix (1:1) 12.5% | 26,400 | 73,600 | 2.8 | 518,600 | 701,200 | 1.3 |
| Sample | E, MPa | εbr, % | σ, MPa |
|---|---|---|---|
| polyHOSBM | 199 ± 24 | 14 ± 4 | 4.6 ± 0.3 |
| SH 12.5% | 102 ± 9 | 22 ± 5 | 2.4 ± 0.4 |
| SH 25% | 142 ± 3 | 18 ± 4 | 2.9 ± 0.4 |
| SH 35% | 52 ± 5 | 55 ± 4 | 1.0 ± 0.03 |
| SM 12.5% | 103 ± 12 | 19 ± 7 | 2.4 ± 0.2 |
| SH:SM (1:1) 12.5% | 103 ± 14 | 23 ± 5 | 2.7 ± 0.5 |
| SH+SM (1:1) 12.5% | 78 ± 6 | 22 ± 4 | 2.1 ± 0.2 |
| Sample | E′ at −50 °C, MPa | E′ at 20 °C, MPa | tan δ, °C | TGA 5% Weight Loss, °C | Char Yield at 600 °C, % |
|---|---|---|---|---|---|
| polyHOSBM | 1750 | 500 | 61 | 227 | 14 |
| SH 12.5% | 2100 | 310 | 43 | 189 | 15 |
| SH 25% | 2400 | 420 | 41 | 164 | 18 |
| SH 35% | 500 | 210 | 67 | 220 | 15 |
| SM 12.5% | 1900 | 230 | 41 | 161 | 15 |
| SH:SM (1:1) 12.5% | 3100 | 190 | 29 | 174 | 13 |
| SH+SM (1:1) 12.5% | 2100 | 360 | 49 | 183 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domnich, B.; Voronov, A. Cross-Linked Biocomposites with Both Matrix and Fillers Made from Soy-Derived Ingredients. J. Compos. Sci. 2025, 9, 678. https://doi.org/10.3390/jcs9120678
Domnich B, Voronov A. Cross-Linked Biocomposites with Both Matrix and Fillers Made from Soy-Derived Ingredients. Journal of Composites Science. 2025; 9(12):678. https://doi.org/10.3390/jcs9120678
Chicago/Turabian StyleDomnich, Bohdan, and Andriy Voronov. 2025. "Cross-Linked Biocomposites with Both Matrix and Fillers Made from Soy-Derived Ingredients" Journal of Composites Science 9, no. 12: 678. https://doi.org/10.3390/jcs9120678
APA StyleDomnich, B., & Voronov, A. (2025). Cross-Linked Biocomposites with Both Matrix and Fillers Made from Soy-Derived Ingredients. Journal of Composites Science, 9(12), 678. https://doi.org/10.3390/jcs9120678

