Two Times Faster Glycolysis of Poly(ethylene terephthalate) with CaO Filler-Catalyst
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Characterization Techniques
2.4. Preparation of CS and CS900 Catalyst
2.5. Preparation of PET-Based Composite Filament
2.6. Three-Dimensional Printing of PET and PET-Based Composite Samples
2.7. Depolymerization of PETf and PETc
2.7.1. General Procedure for Alcoholysis
2.7.2. General Procedure for the Glycolysis
2.7.3. General Procedure for r-PET Preparation by Polycondensation
3. Results and Discussion
3.1. Characterization of Initial CS and CS900
3.2. Properties of 3D Printed PETf and PETc Samples
3.3. Chemical Depolymerization
3.3.1. Alcoholysis
3.3.2. Glycolysis
3.3.3. Polycondensation for Producing Recycled PET (r-PET)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alaraby, M.; Abass, D.; Velázquez, A.; Hernández, A.; Marcos, R. Occurrence, analysis, and toxicity of polyethylene terephthalate microplastics: A review. Environ. Chem. Lett. 2025, 23, 1025–1059. [Google Scholar] [CrossRef]
- Gnoffo, C.; Arrigo, R.; Frache, A. An Upcycling Strategy for Polyethylene Terephthalate Fibers: All-Polymer Composites with Enhanced Mechanical Properties. J. Compos. Sci. 2024, 8, 527. [Google Scholar] [CrossRef]
- Diao, J.; Hu, Y.; Tian, Y.; Carr, R.; Moon, T.S. Upcycling of poly(ethylene terephthalate) to produce high-value bio-products. Cell Rep. 2023, 42, 111908. [Google Scholar] [CrossRef]
- Muringayil Joseph, T.; Azat, S.; Ahmadi, Z.; Moini Jazani, O.; Esmaeili, A.; Kianfar, E.; Haponiuk, J.; Thomas, S. Polyethylene terephthalate (PET) recycling: A review. Case Stud. Chem. Environ. Eng. 2024, 9, 100673. [Google Scholar] [CrossRef]
- Peng, Y.; Yang, J.; Deng, C.; Deng, J.; Shen, L.; Fu, Y. Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study. Nat. Commun. 2023, 14, 3249. [Google Scholar] [CrossRef] [PubMed]
- Lalhmangaihzuala, S.; Rongpipi, M.; Vanlaldinpuia, K.; Rokhum, S.L. Chemo-catalytic recycling of PET waste: Progress and prospects for circular economy and valorization. Next Mater. 2025, 9, 101111. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, Z.; Xiang, S.; Yan, H.; Tian, H. Degradation of Polymer Materials in the Environment and Its Impact on the Health of Experimental Animals: A Review. Polymers 2024, 16, 2807. [Google Scholar] [CrossRef] [PubMed]
- Szabó, V.A.; Fekete, G.; Dogossy, G. Endothermic–Exothermic Hybrid Foaming of Recycled PET Blends. J. Compos. Sci. 2024, 8, 383. [Google Scholar] [CrossRef]
- Fehér, Z.; Kiss, J.; Kisszékelyi, P.; Molnár, J.; Huszthy, P.; Kárpáti, L.; Kupai, J. Optimisation of PET glycolysis by applying recyclable heterogeneous organocatalysts. Green Chem. 2022, 24, 8447–8459. [Google Scholar] [CrossRef]
- Sang, T.; Wallis, C.J.; Hill, G.; Britovsek, G.J.P. Polyethylene terephthalate degradation under natural and accelerated weathering conditions. Eur. Polym. J. 2020, 136, 109873. [Google Scholar] [CrossRef]
- Umdagas, L.; Orozco, R.; Heeley, K.; Al-Duri, B. Towards sustainable polyethylene terephthalate (PET) recycling: Kinetic modelling, parametric analysis, and process optimisation. J. Environ. Chem. Eng. 2025, 13, 119272. [Google Scholar] [CrossRef]
- Volpe, V.; Lanzillo, M.S.; Molaro, A.; Affinita, G.; Pantani, R. Characterization of Recycled/Virgin Polyethylene Terephthalate Composite Reinforced with Glass Fiber for Automotive Applications. J. Compos. Sci. 2022, 6, 59. [Google Scholar] [CrossRef]
- Guo, Z.; Wu, J.; Wang, J. Chemical degradation and recycling of polyethylene terephthalate (PET): A review. RSC Sustain. 2025, 3, 2111–2133. [Google Scholar] [CrossRef]
- Bohre, A.; Jadhao, P.R.; Tripathi, K.; Pant, K.K.; Likozar, B.; Saha, B. Chemical Recycling Processes of Waste Polyethylene Terephthalate Using Solid Catalysts. ChemSusChem 2023, 16, e202300142. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Shaver, M.P. Depolymerization Within a Circular Plastics System. Chem. Rev. 2024, 124, 2617–2650. [Google Scholar] [CrossRef] [PubMed]
- Unruean, P.; Padungros, P.; Nomura, K.; Kitiyanan, B. Efficient chemical depolymerization of polyethylene terephthalate via transesterification with ethanol using CaO catalyst. J. Mater. Cycles Waste Manag. 2024, 26, 731–740. [Google Scholar] [CrossRef]
- Yao, H.; Liu, L.; Yan, D.; Zhou, Q.; Xin, J.; Lu, X.; Zhang, S. Colorless BHET obtained from PET by modified mesoporous catalyst ZnO/SBA-15. Chem. Eng. Sci. 2022, 248, 117109. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, M.; Hwang, J.; Im, E.; Moon, G.D. Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology. Polymers 2022, 14, 656. [Google Scholar] [CrossRef]
- Du, J.-T.; Sun, Q.; Zeng, X.-F.; Wang, D.; Wang, J.-X.; Chen, J.-F. ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate. Chem. Eng. Sci. 2020, 220, 115642. [Google Scholar] [CrossRef]
- Putisompon, S.; Yunita, I.; Sugiyarto, K.H.; Somsook, E. Low-Cost Catalyst for Glycolysis of Polyethylene Terephthalate (PET). Key Eng. Mater. 2019, 824, 225–230. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, M.; Zhao, R.; Liu, F.; Ge, X.; Yu, S. Heterogeneous CaO(SrO, BaO)/MCF as highly active and recyclable catalysts for the glycolysis of poly(ethylene terephthalate). Res. Chem. Intermed. 2018, 44, 7711–7729. [Google Scholar] [CrossRef]
- Forouzeshfar, F.; Coleman, M.R.; Lawrence, J.G. Glycolysis of poly (ethylene terephthalate) using DBU-based ionic liquid catalysts. Catal. Today 2025, 450, 115187. [Google Scholar] [CrossRef]
- Pedrini, L.; Zappelli, C.; Connon, S.J. Ionic Liquid Catalysts for Poly(ethylene terephthalate) Glycolysis: Use of Structure Activity Relationships to Combine Activity with Biodegradability. ACS Sustain. Chem. Eng. 2025, 13, 1424–1430. [Google Scholar] [CrossRef]
- Jiang, Z.; Yan, D.; Xin, J.; Li, F.; Guo, M.; Zhou, Q.; Xu, J.; Hu, Y.; Lu, X. Poly(ionic liquid)s as efficient and recyclable catalysts for methanolysis of PET. Polym. Degrad. Stab. 2022, 199, 109905. [Google Scholar] [CrossRef]
- Wang, T.; Gong, X.; Shen, C.; Yu, G.; Chen, X. Formation of Bis(hydroxyethyl) terephthalate from waste plastic using ionic liquid as catalyst. Polym. Degrad. Stab. 2021, 190, 109601. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, Y.; Yu, G.; Chen, X. Glycolysis of polyethylene terephthalate: Magnetic nanoparticle CoFe2O4 catalyst modified using ionic liquid as surfactant. Eur. Polym. J. 2021, 155, 110590. [Google Scholar] [CrossRef]
- Cano, I.; Martin, C.; Fernandes, J.A.; Lodge, R.W.; Dupont, J.; Casado-Carmona, F.A.; Lucena, R.; Cardenas, S.; Sans, V.; de Pedro, I. Paramagnetic ionic liquid-coated SiO2@Fe3O4 nanoparticles—The next generation of magnetically recoverable nanocatalysts applied in the glycolysis of PET. Appl. Catal. B Environ. 2020, 260, 118110. [Google Scholar] [CrossRef]
- Sinha, P.; Paul, S.; Maity, S.; Banerjee, S. Selective Depolymerization of Poly(ethylene terephthalate) in Mixed Plastic Waste Using Magnetically Recoverable nZVI Catalyst. Environ. Sci. Technol. 2025, 59, 15766–15776. [Google Scholar] [CrossRef]
- Laldinpuii, Z.T.; Khiangte, V.; Lalhmangaihzuala, S.; Lalmuanpuia, C.; Pachuau, Z.; Lalhriatpuia, C.; Vanlaldinpuia, K. Methanolysis of PET Waste Using Heterogeneous Catalyst of Bio-waste Origin. J. Polym. Environ. 2022, 30, 1600–1614. [Google Scholar] [CrossRef]
- Cha, Y.; Park, Y.-J.; Kim, D.H. Hydrodynamic synthesis of Fe2O3@MoS2 0D/2D-nanocomposite material and its application as a catalyst in the glycolysis of polyethylene terephthalate. RSC Adv. 2021, 11, 16841–16848. [Google Scholar] [CrossRef]
- Scremin, D.M.; Miyazaki, D.Y.; Lunelli, C.E.; Silva, S.A.; Zawadzki, S.F. PET Recycling by Alcoholysis Using a New Heterogeneous Catalyst: Study and its Use in Polyurethane Adhesives Preparation. Macromol. Symp. 2019, 383, 1800027. [Google Scholar] [CrossRef]
- Al-Sabagh, A.M.; Yehia, F.Z.; Harding, D.R.K.; Eshaq, G.; ElMetwally, A.E. Fe3O4-boosted MWCNT as an efficient sustainable catalyst for PET glycolysis. Green Chem. 2016, 18, 3997–4003. [Google Scholar] [CrossRef]
- Korabelnikova, V.A.; Gyrdymova, Y.V.; Gordeev, E.G.; Potorochenko, A.N.; Rodygin, K.S.; Ananikov, V.P. 3D printing for safe organic synthesis in mixed liquid/gas-phase chemistry. React. Chem. Eng. 2025, 10, 2474–2489. [Google Scholar] [CrossRef]
- Pongraktham, K.; Somnuk, K. Heterogeneous Calcium Oxide Catalytic Filaments for Three-Dimensional Printing: Preparation, Characterization, and Use in Methyl Ester Production. ACS Omega 2024, 9, 27578–27591. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, K.S.; Dip, T.M.; Chowdhury, M.F.M.; Debnath, S.R.; Hasan, S.M.M.; Sakib, M.S.; Saha, T.; Padhye, R.; Houshyar, S. A review on nanomaterial-based additive manufacturing: Dynamics in properties, prospects, and challenges. Prog. Addit. Manuf. 2024, 9, 1197–1224. [Google Scholar] [CrossRef]
- Lotsman, K.A.; Samoylenko, D.E.; Rodygin, K.S.; Ananikov, V.P. 3D Printable Materials Based on Renewable Polymers from Terpene Alcohols and Calcium Carbide. ChemistrySelect 2024, 9, e202401273. [Google Scholar] [CrossRef]
- Samoylenko, D.E.; Rodygin, K.S.; Ananikov, V.P. Sustainable application of calcium carbide residue as a filler for 3D printing materials. Sci. Rep. 2023, 13, 4465. [Google Scholar] [CrossRef]
- Grande, C.A.; Didriksen, T. Production of Customized Reactors by 3D Printing for Corrosive and Exothermic Reactions. Ind. Eng. Chem. Res. 2021, 60, 16720–16727. [Google Scholar] [CrossRef]
- Alimi, O.A.; Meijboom, R. Current and future trends of additive manufacturing for chemistry applications: A review. J. Mater. Sci. 2021, 56, 16824–16850. [Google Scholar] [CrossRef]
- Maier, M.C.; Valotta, A.; Hiebler, K.; Soritz, S.; Gavric, K.; Grabner, B.; Gruber-Woelfler, H. 3D Printed Reactors for Synthesis of Active Pharmaceutical Ingredients in Continuous Flow. Org. Process Res. Dev. 2020, 24, 2197–2207. [Google Scholar] [CrossRef]
- Iglesias, D.; Tinajero, C.; Marchetti, S.; Roppolo, I.; Zanatta, M.; Sans, V. Multi-step oxidative carboxylation of olefins with carbon dioxide by combining electrochemical and 3D-printed flow reactors. Green Chem. 2023, 25, 9934–9940. [Google Scholar] [CrossRef]
- Iglesias, D.; Tinajero, C.; Luis-Gómez, J.; Aranda, C.A.; Martinez Cuenca, R.; Zanatta, M.; Sans, V. 3D printed flow reactors for the synthesis of single crystal perovskites. Mater. Today Energy 2024, 39, 101476. [Google Scholar] [CrossRef]
- Lorenzi, E.; Arrigo, R.; Frache, A. Development of a Polypropylene-Based Material with Flame-Retardant Properties for 3D Printing. Polymers 2024, 16, 858. [Google Scholar] [CrossRef]
- Greene, A.F.; Vaidya, A.; Collet, C.; Wade, K.R.; Patel, M.; Gaugler, M.; West, M.; Petcu, M.; Parker, K. 3D-Printed Enzyme-Embedded Plastics. Biomacromolecules 2021, 22, 1999–2009. [Google Scholar] [CrossRef]
- Khan, I.; Nagarjuna, R.; Dutta, J.R.; Ganesan, R. Enzyme-Embedded Degradation of Poly(ε-caprolactone) Using Lipase-Derived from Probiotic Lactobacillus plantarum. ACS Omega 2019, 4, 2844–2852. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, M.; Tangestaninejad, S.; Moghadam, M.; Marandi, A.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Aghayani, S. Metal-organic frameworks-derived CaO/ZnO composites as stable catalysts for biodiesel production from soybean oil at room temperature. Sci. Rep. 2025, 15, 3610. [Google Scholar] [CrossRef] [PubMed]
- Potorochenko, A.N.; Rodygin, K. Calcium waste as a catalyst in the transesterification for demanding esters: Scalability perspective. Beilstein J. Org. Chem. 2025, 21, 1520–1527. [Google Scholar] [CrossRef] [PubMed]
- Gholami, A.; Pourfayaz, F.; Rodygin, K. Reusable chemical catalysts for sustainable biodiesel production: The role of metallic elements. ChemBioEng Rev. 2025, 12, e202400033. [Google Scholar] [CrossRef]
- Macheli, L.; Malefane, M.E.; Jewell, L.L. Waste-derived calcium oxide catalysts in biodiesel production: Exploring various waste sources, deactivation challenges, and improvement strategies. Bioresour. Technol. Rep. 2025, 29, 102021. [Google Scholar] [CrossRef]
- Ghosh, N.; Khan, A.M.; Halder, G. Advances in calcium oxide mediated catalytic biodiesel production: A paradigm shift in complying with UN’s SDG7. Appl. Energy 2025, 391, 125954. [Google Scholar] [CrossRef]
- Ozor, P.A.; Aigbodion, V.S.; Sukdeo, N.I. Modified calcium oxide nanoparticles derived from oyster shells for biodiesel production from waste cooking oil. Fuel Commun. 2023, 14, 100085. [Google Scholar] [CrossRef]
- Basumatary, S.F.; Brahma, S.; Hoque, M.; Das, B.K.; Selvaraj, M.; Brahma, S.; Basumatary, S. Advances in CaO-based catalysts for sustainable biodiesel synthesis. Green Energy Resour. 2023, 1, 100032. [Google Scholar] [CrossRef]
- Anjana, P.A.; Niju, S.; Meera Sheriffa Begum, K.M.; Anantharaman, N. Utilization of limestone derived calcium oxide for biodiesel production from non-edible pongamia oil. Environ. Prog. Sustain. Energy 2016, 35, 1758–1764. [Google Scholar] [CrossRef]
- Gimbun, J.; Ali, S.; Kanwal, C.; Shah, L.A.; Ghazali, N.H.M.; Cheng, C.K.; Nurdin, S. Biodiesel production from rubber seed oil using a limestone based catalyst. Adv. Mater. Phys. Chem. 2012, 2, 138–141. [Google Scholar] [CrossRef]
- Das, S.; Kaushik, B.; Chaudhury, A.P.; Basumatary, S.; Pratap, P.; Mohan, S.; Rano, R.; Rokhum, S.L. Microwave-assisted biodiesel production from WCO using snail shell-derived CaO@Coal fly ash: Optimization via RSM, cost analysis, kinetics, thermodynamics, and bibliometrics. Renew. Energy 2025, 254, 123741. [Google Scholar] [CrossRef]
- Ao, S.; Changmai, B.; Vanlalveni, C.; Chhandama, M.V.L.; Wheatley, A.E.H.; Rokhum, S.L. Biomass waste-derived catalysts for biodiesel production: Recent advances and key challenges. Renew. Energy 2024, 223, 120031. [Google Scholar] [CrossRef]
- Chandra Kishore, S.; Perumal, S.; Atchudan, R.; Sundramoorthy, A.K.; Alagan, M.; Sangaraju, S.; Lee, Y.R. A Review of Biomass-Derived Heterogeneous Catalysts for Biodiesel Production. Catalysts 2022, 12, 1501. [Google Scholar] [CrossRef]
- Potorochenko, A.N.; Gyrdymova, Y.V.; Rodygin, K.S. Waste-Derived Catalyst for Biodiesel Manufacturing in CO2-Free Manner: Preparation, Catalytic Activity, and Reuse Studies. ChemCatChem 2025, 17, e202401607. [Google Scholar] [CrossRef]
- Liu, M.; Huang, Y.; Liu, Q.; Hu, X.; Liu, Q.; Chen, H.; Dong, Y.; Zhao, Y.; Niu, S. Ferric oxide as a support of carbide slag for effective transesterification of triglycerides in soybean oil. Energy Convers. Manag. 2019, 198, 111785. [Google Scholar] [CrossRef]
- Li, F.-J.; Li, H.-Q.; Wang, L.-G.; Cao, Y. Waste carbide slag as a solid base catalyst for effective synthesis of biodiesel via transesterification of soybean oil with methanol. Fuel Process. Technol. 2015, 131, 421–429. [Google Scholar] [CrossRef]
- Shen, Y.; Jiang, X.; Tang, C.; Ma, W.; Cheng, J.; Wang, H.; Zhu, H.; Zhao, L.; Zhang, Y.; Zhao, P. Controlled Multi-Dimensional Assembly of Calcium Carbonate Particles with Industrial By-Product Carbide Slag and CO2. Nanomaterials 2025, 15, 16. [Google Scholar] [CrossRef]
- Rodygin, K.S.; Bogachenkov, A.S.; Gyrdymova, Y.V.; Potorochenko, A.N. 13C-Labeling as a Method in Organic Synthesis, Catalysis and Biochemical Applications. Chem. Methods 2025, 5, e202400045. [Google Scholar] [CrossRef]
- An, R.; Cui, W.; Gu, P.; Wei, M.-X. Highly stereoselective synthesis of N-sulfonyl amidines with calcium carbide as an acetylene source. Org. Chem. Front. 2025, 12, 6588–6593. [Google Scholar] [CrossRef]
- Potorochenko, A.N.; Rodygin, K.S.; Ananikov, V.P. Assembly of (2×C2+C’2)×n Molecular Complexity Using a Sequence of Pt- and Pd-Catalyzed Transformations with Calcium Carbide. Eur. J. Org. Chem. 2024, 27, e202301012. [Google Scholar] [CrossRef]
- Gyrdymova, Y.V.; Potorochenko, A.N. Reactions of calcium carbide catalyzed by transition metals: Recent advances and prospects. Russ. Chem. Bull. 2024, 74, 1576–1591. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Wang, B.; Li, Z. Construction of 2-Methylindoles Using Solid Calcium Carbide as a Substitute for Gaseous Acetylene. Eur. J. Org. Chem. 2024, 27, e202301262. [Google Scholar] [CrossRef]
- Wu, J.; Ma, Y.; Wang, Y.; Wang, C.; Luo, H.; Li, D.; Yang, J. Copper-catalyzed direct synthesis of 3-methylene-2-arylisoindolin-1-ones with calcium carbide as a surrogate of gaseous acetylene. Green Chem. 2023, 25, 3425–3430. [Google Scholar] [CrossRef]
- Liu, L.; Sun, G.; Zhang, J. Constructing 5-Methyl-2,4-diaryl-1H-imidazoles Using Calcium Carbide as Alkyne Source via A3-Coupling Cyclization. Adv. Synth. Catal. 2023, 365, 1801–1805. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2009; pp. 159–160. [Google Scholar]
- ISO 527-2:2025; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. International Organization for Standardization: Geneva, Switzerland, 2025.
- Lee, J.J.; Kraus, G.A. One-pot formal synthesis of biorenewable terephthalic acid from methyl coumalate and methyl pyruvate. Green Chem. 2014, 16, 2111–2116. [Google Scholar] [CrossRef]
- Chenot, E.D.; Bernardi, D.; Comel, A.; Kirsch, G. Preparation of Monoalkyl Terephthalates: An Overview. Synth. Commun. 2007, 37, 483–490. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potorochenko, A.N.; Ovchinnikov, A.A.; Rodygin, K.S. Two Times Faster Glycolysis of Poly(ethylene terephthalate) with CaO Filler-Catalyst. J. Compos. Sci. 2025, 9, 680. https://doi.org/10.3390/jcs9120680
Potorochenko AN, Ovchinnikov AA, Rodygin KS. Two Times Faster Glycolysis of Poly(ethylene terephthalate) with CaO Filler-Catalyst. Journal of Composites Science. 2025; 9(12):680. https://doi.org/10.3390/jcs9120680
Chicago/Turabian StylePotorochenko, Anton N., Artem A. Ovchinnikov, and Konstantin S. Rodygin. 2025. "Two Times Faster Glycolysis of Poly(ethylene terephthalate) with CaO Filler-Catalyst" Journal of Composites Science 9, no. 12: 680. https://doi.org/10.3390/jcs9120680
APA StylePotorochenko, A. N., Ovchinnikov, A. A., & Rodygin, K. S. (2025). Two Times Faster Glycolysis of Poly(ethylene terephthalate) with CaO Filler-Catalyst. Journal of Composites Science, 9(12), 680. https://doi.org/10.3390/jcs9120680

