Molecular Dynamics Assessment of Mechanical Properties of Fullerphene and Fullerphene/Graphene Composite
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Stretching the Torsion-Angle Model with Different Potential Functions
3.2. Stretching of GE/qHPC60
3.3. Stretching qHPC60 with Single Vacancy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
System | Potential Function | Fracture Stress (GPa) | Fracture Strain | Reference |
---|---|---|---|---|
qHPC60 (0°) | REAXFF | 26.85 | 0.11 | Our work |
AIREBO | 51.33 | 0.30 | ||
GE/qHPC60 (0°) | REAXFF | 26.85 | 0.11 | |
AIREBO | 116 | 0.27 | ||
qHPC60 (0°)-crack | REAXFF | 13.87 | 0.10 | |
AIREBO | 42.70 | 0.23 | ||
qHPC60 | REAXFF | 24.50 | 0.14 | Nanomaterials 2023, 13, 1936 [17] |
gp + qHPC60 (0°) | 39.5 | 0.26 | ||
qHPC60 (0°)-crack | 17.3 | 0.12 | ||
mC60 | / | 1.10 × 10−08 | 0.074 | Carbon 202 (2023) 118–124 [18] |
Appendix E
References
- Rao, C.N.R.; Biswas, K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene, the New Nanocarbon. J. Mater. Chem. 2009, 19, 2457. [Google Scholar] [CrossRef]
- García de Abajo, F.J. Graphene Plasmonics: Challenges and Opportunities. ACS Photonics 2014, 1, 135–152. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Tromer, R.M.; Ribeiro, L.A., Jr.; Galvão, D.S. A DFT Study of the Electronic, Optical, and Mechanical Properties of a Recently Synthesized Monolayer Fullerene Network. Chem. Phys. Lett. 2022, 804, 139925. [Google Scholar] [CrossRef]
- Yu, L.; Xu, J.; Peng, B.; Qin, G.; Su, G. Anisotropic Optical, Mechanical, and Thermoelectric Properties of Two-Dimensional Fullerene Networks. J. Phys. Chem. Lett. 2022, 13, 11622–11629. [Google Scholar] [CrossRef]
- Peng, B. Monolayer Fullerene Networks as Photocatalysts for Overall Water Splitting. J. Am. Chem. Soc. 2022, 144, 19921–19931. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Cao, C.; Ying, P.; Fan, Z.; Qian, P.; Su, Y. Anisotropic and High Thermal Conductivity in Monolayer Quasi-Hexagonal Fullerene: A Comparative Study against Bulk Phase Fullerene. Int. J. Heat Mass Transf. 2023, 206, 123943. [Google Scholar] [CrossRef]
- Yuan, D.; Pi, H.; Jiang, Y.; Hu, Y.; Zhou, L.; Jia, Y.; Su, G.; Fang, Z.; Weng, H.; Ren, X. Highly In-Plane Anisotropic Optical Properties of Fullerene Monolayers. Sci. China. Ser. G Phys. Mech. Astron. 2023, 66, 247211. [Google Scholar] [CrossRef]
- Ying, P.; Dong, H.; Liang, T.; Fan, Z.; Zhong, Z. Atomistic Insights into the Mechanical Anisotropy and Fragility of Monolayer Fullerene Networks Using Quantum Mechanical Calculations and Machine-Learning Molecular Dynamics Simulations. Extrem. Mech. Lett. 2023, 58, 101929. [Google Scholar]
- Mortazavi, B. Structural, Electronic, Thermal and Mechanical Properties of C60-Based Fullerene Two-Dimensional Networks Explored by First-Principles and Machine Learning. Carbon 2023, 213, 118293. [Google Scholar] [CrossRef]
- Mortazavi, B.; Shojaei, F.; Zhuang, X. A Novel Two-Dimensional C36 Fullerene Network; an Isotropic, Auxetic Semiconductor with Low Thermal Conductivity and Remarkable Stiffness. Mater. Today Nano 2023, 21, 100280. [Google Scholar] [CrossRef]
- Liang, W.; Lu, G.; Yu, J. Machine Learning Accelerates Molten Salt Simulations: Thermal Conductivity of MgCl2-NaCl Eutectic. Adv. Theory Simul. 2022, 5, 2200206. [Google Scholar] [CrossRef]
- Mortazavi, B.; Novikov, I.S.; Podryabinkin, E.V.; Roche, S.; Rabczuk, T.; Shapeev, A.V.; Zhuang, X. Exploring Phononic Properties of Two-Dimensional Materials Using Machine Learning Interatomic Potentials. Appl. Mater. Today 2020, 20, 100685. [Google Scholar] [CrossRef]
- Mortazavi, B.; Podryabinkin, E.V.; Novikov, I.S.; Roche, S.; Rabczuk, T.; Zhuang, X.; Shapeev, A.V. Efficient Machine-Learning Based Interatomic Potentialsfor Exploring Thermal Conductivity in Two-Dimensional Materials. J. Phys. Mater. 2020, 3, 02LT02. [Google Scholar] [CrossRef]
- Mortazavi, B.; Shahrokhi, M.; Shojaei, F.; Rabczuk, T.; Zhuang, X.; Shapeev, A.V. A First-Principles and Machine-Learning Investigation on the Electronic, Photocatalytic, Mechanical and Heat Conduction Properties of Nanoporous C5N Monolayers. Nanoscale 2022, 14, 4324–4333. [Google Scholar] [CrossRef] [PubMed]
- Peng, B. Stability and Strength of Monolayer Polymeric C60. Nano Lett. 2023, 23, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Li, J.; Han, M.; Zhang, Y.; Li, H.; Peng, Q.; Tang, H.-K. Enhancing the Mechanical Stability of 2D Fullerene with a Graphene Substrate and Encapsulation. Nanomaterials 2023, 13, 1936. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, X.; Ni, Y.; Peng, Q.; Wei, Y. Anisotropic Mechanical Response of a 2D Covalently Bound Fullerene Lattice. Carbon 2023, 202, 118–124. [Google Scholar] [CrossRef]
- Shen, G.; Li, L.; Tang, S.; Jin, J.; Chen, X.-J.; Peng, Q. Stability and Elasticity of Quasi-Hexagonal Fullerene Monolayer from First-Principles Study. Crystals 2023, 13, 224. [Google Scholar] [CrossRef]
- Ribeiro, L.A., Jr.; Pereira, M.L., Jr.; Giozza, W.F.; Tromer, R.M.; Galvão, D.S. Thermal Stability and Fracture Patterns of a Recently Synthesized Monolayer Fullerene Network: A Reactive Molecular Dynamics Study. Chem. Phys. Lett. 2022, 807, 140075. [Google Scholar] [CrossRef]
- Xue, Y.; Park, H.S.; Jiang, J.-W. On/off Switchable Interfacial Thermal Resistance in Graphene/Fullerene/Graphene Heterostructures. Int. J. Heat Mass Transf. 2023, 212, 124222. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool. Model. Simul. Mat. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A Reactive Potential for Hydrocarbons with Intermolecular Interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef]
- Senftle, T.P.; Hong, S.; Islam, M.M.; Kylasa, S.B.; Zheng, Y.; Shin, Y.K.; Junkermeier, C.; Engel-Herbert, R.; Janik, M.J.; Aktulga, H.M.; et al. The ReaxFF Reactive Force-Field: Development, Applications and Future Directions. Npj Comput. Mater. 2016, 2, 15011. [Google Scholar] [CrossRef]
- Yang, X.; Wu, S.; Xu, J.; Cao, B.; To, A.C. Spurious Heat Conduction Behavior of Finite-Size Graphene Nanoribbon under Extreme Uniaxial Strain Caused by the AIREBO Potential. Phys. E Low Dimens. Syst. Nanostruct. 2018, 96, 46–53. [Google Scholar] [CrossRef]
- Tersoff, J. New Empirical Approach for the Structure and Energy of Covalent Systems. Phys. Rev. B Condens. Matter 1988, 37, 6991–7000. [Google Scholar] [CrossRef] [PubMed]
- Umeno, Y.; Yachi, Y.; Sato, M.; Shima, H. On the Atomistic Energetics of Carbon Nanotube Collapse from AIREBO Potential. Physica E Low Dimens. Syst. Nanostruct. 2019, 106, 319–325. [Google Scholar] [CrossRef]
- Jensen, B.D.; Wise, K.E.; Odegard, G.M. Simulation of the Elastic and Ultimate Tensile Properties of Diamond, Graphene, Carbon Nanotubes, and Amorphous Carbon Using a Revised ReaxFF Parametrization. J. Phys. Chem. A 2015, 119, 9710–9721. [Google Scholar] [CrossRef]
- van Duin, A.C.T.; Dasgupta, S.; Lorant, F.; Goddard, W.A. ReaxFF: A Reactive Force Field for Hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Yu, T.; Zhang, Y.; Chen, X.; Chen, X.-J.; Peng, Q.; Tang, H.-K. Molecular Dynamics Assessment of Mechanical Properties of Fullerphene and Fullerphene/Graphene Composite. J. Compos. Sci. 2024, 8, 310. https://doi.org/10.3390/jcs8080310
Han M, Yu T, Zhang Y, Chen X, Chen X-J, Peng Q, Tang H-K. Molecular Dynamics Assessment of Mechanical Properties of Fullerphene and Fullerphene/Graphene Composite. Journal of Composites Science. 2024; 8(8):310. https://doi.org/10.3390/jcs8080310
Chicago/Turabian StyleHan, Mingjun, Taotao Yu, Yinghe Zhang, Xue Chen, Xiao-Jia Chen, Qing Peng, and Ho-Kin Tang. 2024. "Molecular Dynamics Assessment of Mechanical Properties of Fullerphene and Fullerphene/Graphene Composite" Journal of Composites Science 8, no. 8: 310. https://doi.org/10.3390/jcs8080310
APA StyleHan, M., Yu, T., Zhang, Y., Chen, X., Chen, X.-J., Peng, Q., & Tang, H.-K. (2024). Molecular Dynamics Assessment of Mechanical Properties of Fullerphene and Fullerphene/Graphene Composite. Journal of Composites Science, 8(8), 310. https://doi.org/10.3390/jcs8080310