Mechanical and Electrical Properties and Electromagnetic-Wave-Shielding Effectiveness of Graphene-Nanoplatelet-Reinforced Acrylonitrile Butadiene Styrene Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Fabrication of ABS+GNP Nanocomposites
2.3. Characterization
3. Results and Discussions
3.1. Morphology of GNPs
3.2. X-ray Diffraction
3.3. Mechanical Properties
3.3.1. Tensile Behavior
3.3.2. Flexural Properties of Composites
3.3.3. Impact Strength
3.3.4. Thermal Stability
3.4. Electrical Conductivity
3.5. Complex Permittivity, Complex Permeability, and Dielectric and Magnetic Loss of ABS+GNP Nanocomposite Films
4. Electromagnetic-Shielding Effectiveness
5. Conclusions
- The modulus of the ABS improved due to the addition of high-stiffness GNPs. The slightly decreased tensile strength was noticed due to interruptions of the intermolecular structure of ABS due to GNPs in the composite. Further, it deteriorates at a higher concentration of GNPs due to poor wetting and agglomeration. In addition, the impact strength is reduced, and the composite becomes brittle due to the addition of GNPs.
- The thermal stability of ABS improved through the thermal barrier, and a faster heat-conducting path developed due to the addition of GNPs.
- The better dispersion state is achieved between 9–12 wt.% GNPs, at which nanocomposites transit from insulate to conductive.
- The addition of GNPs to the ABS matrix improves the , which decreases with the increase in operating frequency. The is independent of frequency for ABS+GNP3, and 9–12 wt.% GNP-filled ABS is dependent on frequency.
- The dielectric loss increases as filler concentration increases, whereas magnetic loss increases at a lower frequency and decreases at higher frequencies.
- The electromagnetic shielding of ABS improved due to the addition of GNPs, and absorption is the dominating mechanism in the composites consisting of 9–15 wt.% GNPs. It is found that 15 wt.% GNP-filled ABS composites show the highest EMI-shielding effectiveness compared to other nanocomposites, in addition to moderate mechanical and thermal properties.
- The 1–2 µm GNP (lateral dimension)-filler-reinforced ABS composites may achieve 155 dB/mm shielding effectiveness.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Wu, Y.; Wang, Y.; Li, H.; Jiang, N.; Niu, K. Laterally compressed graphene foam/acrylonitrile butadiene styrene composites for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 133, 105887. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Maniadi, A.; Koudoumas, E.; Liebscher, M.; Tzounis, L. Mechanical properties of 3D-printed acrylonitrile-butadiene-styrene TiO2 and ATO nanocomposites. Polymers 2020, 12, 1589. [Google Scholar] [CrossRef]
- Kashi, S.; Gupta, R.K.; Baum, T.; Kao, N.; Bhattacharya, S.N. Dielectric properties and electromagnetic interference shielding effectiveness of graphene-based biodegradable nanocomposites. Mater. Des. 2016, 109, 68–78. [Google Scholar] [CrossRef]
- Yan, D.X.; Pang, H.; Xu, L.; Bao, Y.; Ren, P.G.; Lei, J.; Li, Z.M. Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of in situ thermally reduced graphene oxide. Nanotechnology 2014, 25, 145705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wei, L.; Ma, Z.; Fan, Q.; Ma, J. Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding. Carbon N. Y. 2021, 177, 412–426. [Google Scholar] [CrossRef]
- Sachdev, V.K.; Patel, K.; Bhattacharya, S.; Tandon, R.P. Electromagnetic interference shielding of graphite/acrylonitrile butadiene styrene composites. J. Appl. Polym. Sci. 2011, 120, 1100–1105. [Google Scholar] [CrossRef]
- Zhang, L.; Li, R.; Tang, B.; Wang, P. Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale 2016, 8, 14600–14607. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, V.K.; Sharma, S.K.; Tomar, M.; Gupta, V.; Tandon, R.P. EMI shielding of MWCNT/ABS nanocomposites in contrast to graphite/ABS composites and MWCNT/PS nanocomposites. RSC Adv. 2016, 6, 45049–45058. [Google Scholar] [CrossRef]
- Fang, H.; Bai, S.L.; Wong, C.P. Microstructure engineering of graphene towards highly thermal conductive composites. Compos. Part A Appl. Sci. Manuf. 2018, 112, 216–238. [Google Scholar] [CrossRef]
- Al-Saleh, M.H.; Sundararaj, U. X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. J. Phys. D. Appl. Phys. 2013, 46, 035304. [Google Scholar] [CrossRef]
- Magisetty, R.P.; Shukla, A.; Kandasubramanian, B. Terpolymer (ABS) cermet (Ni-NiFe2O4) hybrid nanocomposite engineered 3D-carbon fabric mat as a X-band electromagnetic interference shielding material. Mater. Lett. 2019, 238, 214–217. [Google Scholar] [CrossRef]
- Ji, K.; Zhao, H.; Zhang, J.; Chen, J.; Dai, Z. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu-Ni alloy integrated with CNTs. Appl. Surf. Sci. 2014, 311, 351–356. [Google Scholar] [CrossRef]
- Ma, J.; Wang, K.; Zhan, M. A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv. 2015, 5, 65283–65296. [Google Scholar] [CrossRef]
- Dul, S.; Pegoretti, A.; Fambri, L. Effects of the nanofillers on physical properties of acrylonitrile-butadiene-styrene nanocomposites: Comparison of graphene nanoplatelets and multiwall carbon nanotubes. Nanomaterials 2018, 8, 674. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.X.; Shu, J.C.; Cao, W.Q.; Zhang, M.; Yuan, J.; Cao, M.S. Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 2019, 369, 1068–1077. [Google Scholar] [CrossRef]
- Wang, Q.; Niu, B.; Han, Y.; Zheng, Q.; Li, L.; Cao, M. Nature-inspired 3D hierarchical structured “vine” for efficient microwave attenuation and electromagnetic energy conversion device. Chem. Eng. J. 2023, 452, 139042. [Google Scholar] [CrossRef]
- SD 0150 SD-0150 General Purpose ABS. Available online: https://www.b2bpolymers.com/TDS/TPC_SD0150.pdf (accessed on 22 July 2021).
- ASTM D638; Standard Test Method for Tensile Properties of Plastics 1. ASTM: West Conshohocken, PA, USA, 2006; pp. 1–15. [CrossRef]
- ASTM D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM: West Conshohocken, PA, USA, 2002; pp. 1–12. [CrossRef]
- ASTM D256; Standard Test Methods for Felt. ASTM: West Conshohocken, PA, USA, 1987. [CrossRef]
- Li, Y.; Zhu, J.; Wei, S.; Ryu, J.; Wang, Q.; Sun, L.; Guo, Z. Poly(propylene) nanocomposites containing various carbon nanostructures. Macromol. Chem. Phys. 2011, 212, 2429–2438. [Google Scholar] [CrossRef]
- Mohammed, M.I.; Wilson, D.; Gomez-Kervin, E.; Tang, B.; Wang, J. Investigation of Closed-Loop Manufacturing with Acrylonitrile Butadiene Styrene over Multiple Generations Using Additive Manufacturing. ACS Sustain. Chem. Eng. 2019, 7, 13955–13969. [Google Scholar] [CrossRef]
- Rashad, M.; Pan, F.; Tang, A.; Asif, M.; She, J.; Gou, J.; Mao, J.; Hu, H. Development of magnesium-graphene nanoplatelets composite. J. Compos. Mater. 2014, 49, 285–293. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; Chen, D.; Lu, P. Erratum: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites (Macromolecules (2010) 43 (23572363)). Macromolecules 2011, 44, 2392. [Google Scholar] [CrossRef]
- Inuwa, I.M.; Hassan, A.; Samsudin, S.A.; Mohamad Kassim, M.H.; Jawaid, M. Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites. Polym. Compos. 2014, 35, 2029–2035. [Google Scholar] [CrossRef]
- Dul, S.; Fambri, L.; Merlini, C.; Barra, G.M.O.; Bersani, M.; Vanzetti, L.; Pegoretti, A. Effect of graphene nanoplatelets structure on the properties of acrylonitrile–butadiene–styrene composites. Polym. Compos. 2019, 40, E285–E300. [Google Scholar] [CrossRef]
- Pour, R.H.; Hassan, A.; Soheilmoghaddam, M.; Bidsorkhi, H.C. Mechanical, thermal, and morphological properties of graphene reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites. Polym. Compos. 2016, 37, 1633–1640. [Google Scholar] [CrossRef]
- Jiang, X.; Drzal, L.T. Multifunctional high density polyethylene nanocomposites produced by incorporation of exfoliated graphite nanoplatelets 1: Morphology and mechanical properties. Polym. Compos. 2010, 31, 1091–1098. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Pierre, C.; Diking, D.A.; Ruoff, R.S.; Ramanathan, T.; Catherine Brinson, L.; Torkelson, J.M. Polymer—Graphite nanocomposites: Effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 2008, 41, 1905–1908. [Google Scholar] [CrossRef]
- Mohomed, K.; Moussy, F.; Harmon, J.P. Dielectric analyses of a series of poly(2-hydroxyethyl methacrylate-co-2,3-dihydroxypropyl methacylate) copolymers. Polymer 2006, 47, 3856. [Google Scholar] [CrossRef]
- Zeraati, A.S.; Arjmand, M.; Sundararaj, U. Silver Nanowire/MnO2 Nanowire Hybrid Polymer Nanocomposites: Materials with High Dielectric Permittivity and Low Dielectric Loss. ACS Appl. Mater. Interfaces 2017, 9, 14328–14336. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Choudhary, V. Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos. Sci. Technol. 2011, 71, 1563–1568. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, A.; Haldar, K.K.; Gupta, V.; Singh, K. Lightweight reduced graphene oxide-Fe3O4 nanoparticle composite in the quest for an excellent electromagnetic interference shielding material. Nanotechnology 2018, 29, 245203. [Google Scholar] [CrossRef]
- Chen, C.; Pan, L.; Jiang, S.; Yin, S.; Li, X.; Zhang, J.; Feng, Y.; Yang, J. Electrical conductivity, dielectric and microwave absorption properties of graphene nanosheets/magnesia composites. J. Eur. Ceram. Soc. 2018, 38, 1639–1646. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Mittal, V. Advanced Nanostructured Materials in Electromagnetic Interference Shielding. In Hybrid Nanomaterials; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 2016, 9, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.-J.; Wang, W.-Y.; Chen, X.J.; Lin, T.; Zhang, Y.-T.; Yang, J.-H.; Wang, Y.; Zhou, Z.-W. Hybrid network structure and thermal conductive properties in poly(vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets. Compos. Part A Appl. Sci. Manuf. 2016, 90, 614–625. [Google Scholar] [CrossRef]
- Madinehei, M.; Kuester, S.; Kaydanova, T.; Moghimian, N.; David, É. Influence of graphene nanoplatelet lateral size on the electrical conductivity and electromagnetic interference shielding performance of polyester nanocomposites. Polymers 2021, 13, 2567. [Google Scholar] [CrossRef] [PubMed]
Property | Test Method | Test Condition | Unit | Value |
---|---|---|---|---|
MFI | ASTM D1238 | (200 °C/5 kg) | Gr/10 min | 1.7 |
Izod impact strength | ISO 180 | 1/8 inch | Kj m−2 | 25 |
Tensile strength at yield | ASTM D 638 | 5 mm/min | Kgf cm−2 | 440 |
Elongation at break | ASTM D 638 | 5 mm/min | % | 40 |
Flexural strength at yield | ASTM D 790 | 2.8 mm/min | Kgf cm−2 | 640 |
Flexural modulus | ASTM D 790 | 2.8 mm/min | Kgf cm−2 | 20,500 |
Vicat softening temperature | ASTM D 1525 | 5 kg | °C | 99 |
Rockwell hardness | ASTM D 785 | R-scale | 104 |
Samples | GNPs | 20 wt.% Loss at Temperature (°C) | 50 wt.% Loss at Temperature (°C) | 80 wt.% Loss at Temperature (°C) | Improvement in wt.% Loss Temperature (°C) | Residual (%) at 600 °C | ||
---|---|---|---|---|---|---|---|---|
(wt.%) | at 20 wt.% | at 50 wt.% | at 80 wt.% | |||||
ABS | 0 | 399.45 | 420.26 | 438.60 | 2.16 | |||
ABS+GNP | 3 | 399.45 | 419.84 | 439.35 | 0 | 0.42 | 0.75 | 4.55 |
6 | 396.45 | 419.05 | 439.89 | 3 | 1.21 | 1.25 | 6.58 | |
9 | 400.85 | 420.45 | 444.09 | 1.4 | 0.19 | 5.49 | 10.71 | |
12 | 402.25 | 421.85 | 442.69 | 2.8 | 1.59 | 4.09 | 11.30 | |
15 | 402.42 | 424.65 | 448.28 | 2.97 | 4.39 | 9.68 | 14.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandra, R.B.J.; Shivamurthy, B.; Kumar, M.S.; Prabhu, N.N.; Sharma, D. Mechanical and Electrical Properties and Electromagnetic-Wave-Shielding Effectiveness of Graphene-Nanoplatelet-Reinforced Acrylonitrile Butadiene Styrene Nanocomposites. J. Compos. Sci. 2023, 7, 117. https://doi.org/10.3390/jcs7030117
Chandra RBJ, Shivamurthy B, Kumar MS, Prabhu NN, Sharma D. Mechanical and Electrical Properties and Electromagnetic-Wave-Shielding Effectiveness of Graphene-Nanoplatelet-Reinforced Acrylonitrile Butadiene Styrene Nanocomposites. Journal of Composites Science. 2023; 7(3):117. https://doi.org/10.3390/jcs7030117
Chicago/Turabian StyleChandra, R. B. Jagadeesh, B. Shivamurthy, M. Sathish Kumar, Niranjan N. Prabhu, and Devansh Sharma. 2023. "Mechanical and Electrical Properties and Electromagnetic-Wave-Shielding Effectiveness of Graphene-Nanoplatelet-Reinforced Acrylonitrile Butadiene Styrene Nanocomposites" Journal of Composites Science 7, no. 3: 117. https://doi.org/10.3390/jcs7030117