Processing and Mechanical Characterisation of Titanium Metal Matrix Composites: A Literature Review
Abstract
:1. Introduction
2. Processing Methods of TMCs
2.1. Powder Metallurgy
2.2. Ex Situ Processing Technique
2.3. In Situ Synthesis Methods
2.4. Rapid Solidification Process
3. Mechanical Properties of Titanium Matrix Composites
3.1. Static Properties
3.2. Wear Properties
3.3. Fatigue Properties
3.3.1. Reinforcement Type and Configuration
3.3.2. Manufacturing
3.3.3. Loading Conditions in the Case of Fiber-Reinforced TMCs
3.3.4. Prior Impact Damage
3.4. Fracture Toughness
4. Conclusions
- From the literature, it was observed that among Powder Metallurgy, Ex situ, In situ, and Rapid Solidification for TMCs, Powder Metallurgy had been proven to be the best processing technique. Homogeneous powder mixing results in isotropic dispersion of reinforcements and the interfacial bonding between reinforcements and the matrix.
- It was also observed that the sintering temperature above 1000 °C resulted in Silicides and ternary carbide formation during the processing of TMCs in the powder metallurgy technique. Hence, these silicide and ternary carbide formations improved mechanical properties and wear resistance and also stabilised the friction coefficient.
- Further, during in situ processing technique, the titanium matrix is combined with additional elements like boron, carbon and nitrogen, which are dispersed through a solid-state reaction. The improved interfacial bonding between the matrix and the reinforcement results in higher specific strength and modulus and improved tribological performance.
- Finally, in the rapid solidification technique, particle aggregation during the atomisation process may result in a non-uniform distribution of reinforcements in the composite powder.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, A.K.; Bhandari, R.; Aherwar, A.; Rimašauskienė, R. Matrix materials used in composites: A comprehensive study. Mater. Today Proc. 2020, 21, 1559–1562. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.K. Effect of machining parameters on deformation behaviour of Ti based metal matrix composites under tension. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 217–225. [Google Scholar] [CrossRef]
- Corrosionpedia. Dictionary-General Procedures. Last Updated in [February 2021]. Available online: https://www.corrosionpedia.com/topic/105/general-procedures (accessed on 1 September 2022).
- Hakami, F.; Pramanik, A.; Basak, A.K. Tool wear and surface quality of metal matrix composites due to machining: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 739–752. [Google Scholar] [CrossRef] [Green Version]
- GE Aviations. Available online: https://www.geaviation.com/commercial/engines (accessed on 1 September 2022).
- Titanium in the Family Automobile: The Cost Challenge-Scientific Figure on ResearchGate. Available online: https://www.researchgate.net/figure/A-demonstration-titanium-MMC-crankshaft-weighing-5-kg_fig8_226372124 (accessed on 11 September 2022).
- DentiumSuperline® Characteristics. Available online: www.dentiumusa.com (accessed on 11 September 2022).
- Khan, H.; Zeeshan, M. Modern Methods of Construction. IJARIIE-ISSN(O)-2395-4396. 2019. Available online: http://ijariie.com/AdminUploadPdf/MODERN_METHODS_OF_CONSTRUCTION_ijariie10601.pdf (accessed on 11 September 2022).
- Pramanik, A.; Islam, M.; Davies, I.; Boswell, B.; Dong, Y.; Basak, A.; Uddin, M.; Dixit, A.; Chattopadhyaya, S. Contribution of machining to the fatigue behaviour of metal matrix composites (MMCs) of varying reinforcement size. Int. J. Fatigue 2017, 102, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, A.; Zhang, L.C. Particle fracture and debonding during orthogonal machining of metal matrix composites. Adv. Manuf. 2017, 5, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Torralba, J.M.; da Costa, C.E.; Velasco, F. P/M aluminum matrix composites: An overview. J. Mater. Process. Technol. 2003, 133, 203–206. [Google Scholar] [CrossRef]
- Watt, D.; Xu, X.; Lloyd, D. Effects of particle morphology and spacing on the strain fields in a plastically deforming matrix. Acta Mater. 1996, 44, 789–799. [Google Scholar] [CrossRef]
- Qin, S.; Chen, C.; Zhang, G.; Wang, W.; Wang, Z. The effect of particle shape on ductility of SiCp reinforced 6061 Al matrix composites. Mater. Sci. Eng. A 1999, 272, 363–370. [Google Scholar] [CrossRef]
- Yan, Y.; Geng, L.; Li, A. Experimental and numerical studies of the effect of particle size on the deformation behavior of the metal matrix composites. Mater. Sci. Eng. A 2007, 448, 315–325. [Google Scholar] [CrossRef]
- Kiser, M.T.; Zok, F.W.; Wilkinson, D.S. Plastic flow and fracture of a particulate metal matrix composite. Acta Mater. 1996, 44, 3465–3476. [Google Scholar] [CrossRef]
- Segurado, J.; Llorca, J. Computational micromechanics of composites: The effect of particle spatial distribution. Mech. Mater. 2006, 38, 873–883. [Google Scholar] [CrossRef]
- Ibrahim, I.A.; Mohamed, F.A.; Lavernia, E.J. Particulate reinforced metal matrix composites—A review. J. Mater. Sci. 1991, 26, 1137–1156. [Google Scholar] [CrossRef]
- Llorca, J.; Gonzalez, C. Microstructural factors controlling the strength and ductility of particle-reinforced metal-matrix composites. J. Mech. Phys. Solids 1998, 46, 1–28. [Google Scholar] [CrossRef]
- Surappa, M.K. Aluminium matrix composites: Challenges and opportunities. Sadhana Acad. Proc. Eng. Sci. 2003, 28, 319–334. [Google Scholar] [CrossRef]
- Ban, H.; Yao, Y.; Chen, S.; Fang, D. A new constitutive model of micro-particle reinforced metal matrix composites with damage effects. Int. J. Mech. Sci. 2019, 152, 524–534. [Google Scholar] [CrossRef]
- Chawla, N.; Shen, Y.L. Mechanical behavior of particle reinforced metal matrix composites. Adv. Eng. Mater. 2001, 3, 357–370. [Google Scholar] [CrossRef]
- Lloyd, D.J. Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 1994, 39, 1–23. [Google Scholar] [CrossRef]
- Dai, L.H.; Ling, Z.; Bai, Y.L. Size-dependent inelastic behavior of particle-reinforced metal matrix composites. Compos. Sci. Technol. 2001, 61, 1057–1063. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, W.; Zhang, L. Microstructure-based modeling of fracture of particulate reinforced metal matrix composites. Compos. Part B Eng. 2019, 163, 384–392. [Google Scholar] [CrossRef]
- Llorca, J. Void formation in metal matrix composites. Compr. Compos. Mater. 2000, 3, 91–115. [Google Scholar]
- Moloney, A.C.; Kausch, H.H.; Kaiser, T.; Beer, H.R. Parameters determining the strength and toughness of particulate filled epoxide resins. J. Mater. Sci. 1987, 22, 381–393. [Google Scholar] [CrossRef]
- Cantwell, W.J.; Roulin-Moloney, A.C.; Kaiser, T. Fractography of unfilled and particulate-filled epoxy resins. J. Mater. Sci. 1988, 23, 1615–1631. [Google Scholar] [CrossRef]
- Whitehouse, A.; Clyne, T. Cavity formation during tensile straining of particulate and short fiber metal matrix composites. Acta Metall. Mater. 1993, 41, 1701–1711. [Google Scholar] [CrossRef]
- Bomberger, H.B.; Froes, F.H.; Morton, P.H. Titanium Technology: Present Status and Future Trends; TDA: Dayton, OH, USA, 1985; p. 3. [Google Scholar]
- Lutjering, G.; Williams, J.C. Titanium; Springer: New York, NY, USA, 2003; p. 2. [Google Scholar]
- Available online: https://en.wikipedia.org/wiki/File:Titanium_metal.jpg (accessed on 11 September 2022).
- Saito, T. The automotive application of discontinuously reinforced TiB-Ti composites. JOM 2004, 56, 33–36. [Google Scholar] [CrossRef]
- Ward-Close, M.; Godfrey, S.; Robertson, J. Titanium Metal Matrix Composites. In Aerospace Materials; Brian Cantor, P.G., Assender, H., Eds.; CRC Press: Boca Raton, FL, USA, 2001; p. 312. [Google Scholar]
- Boulos, M.I. RF induction plasma spraying: State-of-the-art review. J. Therm. Spray Technol. 1992, 1, 33–40. [Google Scholar] [CrossRef]
- Pank, D.R.; Jackson, J.J. Metal-matrix composite processing technologies for aircraft engine applications. J. Mater. Eng. Perform. 1993, 2, 341–346. [Google Scholar] [CrossRef]
- Lobley, C.; Guo, X. Viable routes to large-scale commercialisation of silicon carbide fiber titanium matrix composites. Mater. Technol. 1999, 14, 133–138. [Google Scholar] [CrossRef]
- Lobley, C.M.; Guo, Z.X. Processing of Ti-SiC metal matrix composites by tape casting. Mater. Sci. Technol. 1998, 14, 1024–1028. [Google Scholar] [CrossRef]
- Mallick, P.K. Fiber-Reinforced Composites. In Materials, Manufacturing and Design, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Song, Y.; Dong, S.; Stasiuk, O.; Savvakin, D.; Ivasishin, O. Synthesis of Ti/TiB Composites via Hydrogen-Assisted Blended Elemental Powder Metallurgy. Front. Mater. 2020, 7, 572005. [Google Scholar] [CrossRef]
- Tizazu, H.M. Processing and characterization of Ã-Â2-titanium alloy composites using an energy metallurgical approach. Adv. Mater. Sci. Res. 2022, 5, 112. [Google Scholar]
- Singh, H.; Yu, T.; Hayat, M.; Bokhari, S.W.; He, Z.; Cao, P. Development of titanium metal matrix composites reinforced with coated powders. Int. J. Mod. Phys. B 2020, 34, 2040049. [Google Scholar] [CrossRef]
- Gülsoy, H.Ö.; Özbey, S.; Pazarlioglu, S.; Çiftçi, M.; Akyurt, H. Sintering and Mechanical Properties of Titanium Composites Reinforced Nano Sized Al2O3 Particles. Int. J. Mater. Mech. Manuf. 2015, 4, 111–114. [Google Scholar] [CrossRef]
- Tuğba, M.; Gurbuz, M.; Hutuk, H. Prediction of wear properties of graphene-Si3N4 reinforced titanium hybrid composites by artificial neural network. Mater. Res. Express 2020, 7, 086511. [Google Scholar]
- Liu, J.; Hu, N.; Liu, X.; Liu, Y.; Lv, X.; Wei, L.; Zheng, S. Microstructure and Mechanical Properties of Graphene Oxide-Reinforced Titanium Matrix Composites Synthesized by Hot-Pressed Sintering. Nanoscale Res. Lett. 2019, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Kellen, D.T.; Amit, B. Designing high-temperature oxidation-resistant titanium matrix composites via directed energy deposition-based additive manufacturing. Mater. Des. 2021, 212, 110205. [Google Scholar]
- Guo, S. Reactive hot-pressed hybrid ceramic composites comprising SiC(SCS-6)/Ti composite and ZrB2–ZrC ceramic. J. Am. Ceram. Soc. 2016, 99, 3241–3250. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, L.; Jiang, F.; Zhang, M.; Wang, L.; Yun, F. Elasto-plastic mechanical properties and failure mechanism of innovative Ti-(SiCf/Al3Ti) laminated composites for sphere-plane contact at the early stage of penetration process. Materials 2018, 11, 1152. [Google Scholar] [CrossRef] [Green Version]
- Groh, H.C.D. One-Step Tape Casting of Composites via Slurry on Fiber; Ohio Glenn Research Center: Cleveland, OH, USA, 2001. [Google Scholar]
- Kondoh, K. Titanium metal matrix composites by powder metallurgy (PM) routes. In Titanium Powder Metallurgy; Qian, M., Froes, F.H., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2015; pp. 277–297. [Google Scholar]
- Ayers, R.; Burkes, D.; Gottoli, G.; Yi, H.C.; Moore, J.J. The Application of Self-Propagating High-Temperature Synthesis of Engineered Porous Composite Biomedical Materials. Mater. Manuf. Process. 2007, 22, 481–488. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar] [CrossRef]
- Guo, X.; Wang, L.; Wang, M.; Qin, J.; Zhang, D.; Lu, W. Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites. Acta Mater. 2012, 60, 2656–2667. [Google Scholar] [CrossRef]
- Srivatsan, T.; Sudarshan, T.; Lavernia, E. Processing of discontinuously-reinforced metal matrix composites by rapid solidification. Prog. Mater. Sci. 1995, 39, 317–409. [Google Scholar] [CrossRef]
- Li, N.; Cui, C.; Liu, S.; Liu, S.; Cui, S.; Wang, Q. Microstructure and mechanical properties of Ti6Al4V alloy modified and reinforced by in situ Ti5Si3/Ti composite ribbon inoculants. Metals 2017, 7, 267. [Google Scholar] [CrossRef] [Green Version]
- Srivatsan, T.S.; Lin, Y.; Chen, F.; Manigandan, K.; Lavernia, E.J. Synthesis and Microstructural Development of Particulate Reinforced Metal-Matrix Composites Using the Technique of Spray Atomization and Deposition; Springer International Publishing: Cham, Switzerland, 2018; pp. 149–182. [Google Scholar]
- Hu, D.; Johnson, T.P.; Loretto, M.H. Tensile properties of a gas atomised Ti6Al4V-TiC composite. In Proceedings of the Eighth World Conference on Titanium, Birmingham, UK, 22–26 October 1995; pp. 2867–2873. [Google Scholar]
- Christodoulou, L.; Parrish, P.A.; Crowe, C.R. XD™ Titanium aluminide composites. MRS Proc. 2011, 120, 29. [Google Scholar] [CrossRef]
- Adams, M.L.; Kampe, S.L.; Harmon, A.R.; Christodoulou, L. Characterization of Extruded XDTM Intermetallic Composite Powders; Martin Marietta Laboratories: Baltimore, MD, USA, 1989. [Google Scholar]
- Fan, Z.; Miodownik, A.P.; Chandrasekaran, L.; Ward-Close, M. The Young’s moduli of in situ Ti/TiB composites obtained by rapid solidification processing. J. Mater. Sci. 1994, 29, 1127–1134. [Google Scholar] [CrossRef]
- Gofrey, T.M.T.; Goodwin, P.S.; Ward-Close, C.M. Titanium particulate metal matrix composites–reinforcement, production methods, and mechanical properties. Adv. Eng. Mater. 2000, 2, 85–91. [Google Scholar] [CrossRef]
- Vert, R.; Pontone, R.; Dolbec, R.; Dionne, L.; Boulos, M. Induction plasma technology applied to powder manufacturing: Example of titanium-based materials. In Proceedings of the 22nd International Symposium on Plasma Chemistry, Antwerp, Belgium, 10 July 2015. [Google Scholar]
- Chaudhari, R.; Bauri, R. A novel functionally gradient Ti/TiB/TiC hybrid composite with wear resistant surface layer. J. Alloys Compd. 2018, 744, 438–444. [Google Scholar] [CrossRef]
- Bhat, B.V.R.; Subramanyam, J.; Prasad, V.V.B. Preparation of Ti-TiBTiC & Ti-TiB composites by in-situ reaction hot pressing. Mater. Sci. Eng. A 2002, 325, 126–130. [Google Scholar]
- Panda, K.B.; Chandran, K.S.R. Synthesis of ductile titanium-titanium boride (Ti-TiB) composites with a beta-titanium matrix: The nature of TiB formation and composite properties. Met. Mater. Trans. A 2003, 34, 1371–1385. [Google Scholar] [CrossRef]
- Xinghong, Z.; Qiang, X.; Jiecai, H.; Kvanin, V. Self-propagating high temperature combustion synthesis of TiB/Ti composites. Mater. Sci. Eng. A 2003, 348, 41–46. [Google Scholar] [CrossRef]
- Gorsse, S.; Miracle, D. Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater. 2003, 51, 2427–2442. [Google Scholar] [CrossRef]
- Feng, H.; Zhou, Y.; Jia, D.; Meng, Q. Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering. Compos. Sci. Technol. 2004, 64, 2495–2500. [Google Scholar] [CrossRef]
- Soboyejo, W.O.; Shen, W.; Srivatsan, T.S. An investigation of fatigue crack nucleation and growth in a Ti–6Al–4V/TiB in situ composite. Mech. Mater. 2004, 36, 141–159. [Google Scholar] [CrossRef]
- Emura, S.; Hagiwara, M.; Yang, S.J. Room-temperature tensile and high-cycle-fatigue strength of fine TiB particulate-reinforced Ti-22Al-27Nb composites. Met. Mater. Trans. A 2004, 35, 2971–2979. [Google Scholar] [CrossRef]
- Geng, K.; Lu, W.; Qin, Y.; Zhang, D. In situ preparation of titanium matrix composites reinforced with TiB whiskers and Y2O3 particles. Mater. Res. Bull. 2004, 39, 873–879. [Google Scholar] [CrossRef]
- Bettge, D.; Günther, B.; Wedell, W.; Portella, P.D.; Hemptenmacher, J.; Peters, P.W.M.; Skrotzki, B. Mechanical behavior and fatigue damage of a titanium matrix composite reinforced with continuous SiCfibers. Mater. Sci. Eng. A 2007, 452–453, 536–544. [Google Scholar] [CrossRef]
- Poletti, C.; Balog, M.; Schubert, T.; Liedtke, V.; Edtmaier, C. Production of titanium matrix composites reinforced with SiC particles. Compos. Sci. Technol. 2008, 68, 2171–2177. [Google Scholar] [CrossRef] [Green Version]
- Kondoh, K.; Threrujirapapong, T.; Imai, H.; Umeda, J.; Fugetsu, B. Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos. Sci. Technol. 2009, 69, 1077–1081. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Zhang, S.; Li, A.; Wang, H. Microstructure and tensile properties of laser melting deposited TiC/TA15 titanium matrix composites. J. Alloys Compd. 2009, 485, 156–162. [Google Scholar] [CrossRef]
- Kumar, M.S.; Chandrasekar, P.; Chandramohan, P.; Mohanraj, M. Characterisation of titanium–titanium boride composites processed by powder metallurgy techniques. Mater. Charact. 2012, 73, 43–51. [Google Scholar] [CrossRef]
- Kondoh, K.; Threrujirapapong, T.; Umeda, J.; Fugetsu, B. High-temperature properties of extruded titanium composites fabricated from carbon nanotubes coated titanium powder by spark plasma sintering and hot extrusion. Compos. Sci. Technol. 2012, 72, 1291–1297. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Chen, F.; Cai, Y.; Zheng, Y. Microstructure and mechanical properties of in-situ synthesized TiB whiskers reinforced titanium matrix composites by high-velocity compaction. Powder Technol. 2014, 267, 309–314. [Google Scholar] [CrossRef]
- Karimi, M.; Toroghinejad, M.R. An alternative method for manufacturing high-strength CP Ti–SiC composites by accumulative roll bonding process. Mater. Des. 2014, 59, 494–501. [Google Scholar] [CrossRef]
- Li, S.; Kondoh, K.; Imai, H.; Chen, B.; Jia, L.; Umeda, J. Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB. Mater. Sci. Eng. A 2015, 628, 75–83. [Google Scholar] [CrossRef]
- Smith, P.R.; Graves, J.A.; Rhodes, C. Comparison of orthorhombic and alpha-two titanium aluminides as matrices for continuous SiC-reinforced composites. Metall. Mater. Trans. A 1994, 25, 1267–1283. [Google Scholar] [CrossRef]
- Peters, P.W.M.; Xia, Z.; Hemptenmacher, J.; Assler, H. Influence of interfacial stress transfer on fatigue crack growth in SiC-fibre reinforced titanium alloys. Compos. A Appl. Sci. Manuf. 2001, 32, 561–567. [Google Scholar] [CrossRef]
- Hung, Y.C.; Bennett, J.A.; Garcia-Pastor, F.A.; Di Michiel, M.; Buffière, J.Y.; Doel, T.J.A.; Bowen, P.; Withers, P.J. Fatigue crack growth and load redistribution in Ti/SiC composites observed in situ. Acta Mater. 2009, 57, 590–599. [Google Scholar] [CrossRef]
- Hung, Y.-C.; Withers, P. Fibre bridging during high temperature fatigue crack growth in Ti/SiC composites. Acta Mater. 2012, 60, 958–971. [Google Scholar] [CrossRef]
- Guanghai, F.; Yanqing, Y.; Jian, L.; Xian, L.; Bin, H.; Qing, S. Fatigue behavior and damage evolution of SiCFiber reinforced Ti-6Al-4V alloy matrix composites. Rare Met. Mater. Eng. 2014, 43, 2049–2054. [Google Scholar] [CrossRef]
- Leyens, C.; Kocian, F.; Hausmann, J.; Kaysser, W.A. Materials and design concepts for high performance compressor components. Aerosp. Sci. Technol. 2003, 7, 201–210. [Google Scholar] [CrossRef]
- Feng, G.H.; Yang, Y.Q.; Luo, X.; Li, J.; Huang, B.; Chen, Y. Fatigue properties and fracture analysis of a SiCfiber-reinforced titanium matrix composite. Compos. B Eng. 2015, 68, 336–342. [Google Scholar] [CrossRef]
- Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Peters, M.; Gysler, A.; Lütjering, G. Influence of texture on fatigue properties of Ti-6Al-4V. Met. Mater. Trans. A 1984, 15, 1597–1605. [Google Scholar] [CrossRef]
- Zhu, B.; Mei, B.; Shen, C.; Yuan, R. Study on the electrical and mechanical properties of polyvinylidene fluroide/titanium silicon carbide composite bipolar plates. J. Power Sources 2006, 161, 997–1001. [Google Scholar]
- Zhu, G.; Zhang, Q.; Wang, K.; Huang, Y.; Zhang, J. Effects of Different Electrode Materials on High-speed Electrical Discharge Machining of W9Mo3Cr4V. CIRP J. Manuf. Sci. Technol. 2018, 68, 64–69. [Google Scholar] [CrossRef]
Element Properties—Titanium | |
---|---|
Atomic Number | 22 |
Atomic Weight | 47.867 |
Melting point | 1600 °C |
Boiling point | 3287 °C |
Density | 4.5 g/cm3 |
Oxidation states | +2, +3, +4 |
Electron configuration | [Ar]3d24s2 |
Natural Occurrence | Primordial |
---|---|
Crystal Structure | Hexagonal close packed |
Thermal Expansion | 8.6 µm/(m⋅K) (at 25 °C) |
Thermal Conductivity | 21.9 W/(m⋅K) |
Electrical Resistivity | 420 nω⋅m at 20 °C |
Magnetic Ordering | Paramagnetic |
Young’s modulus | 116 GPa |
Shear Modulus | 44 GPa |
Poisson ratio | 0.32 |
Moh’s hardness | 6.0 |
Vicker’s hardness | 830–3420 MPa |
Brinell hardness | 716–2770 MPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shetty, R.; Hegde, A.; Shetty SV, U.K.; Nayak, R.; Naik, N.; Nayak, M. Processing and Mechanical Characterisation of Titanium Metal Matrix Composites: A Literature Review. J. Compos. Sci. 2022, 6, 388. https://doi.org/10.3390/jcs6120388
Shetty R, Hegde A, Shetty SV UK, Nayak R, Naik N, Nayak M. Processing and Mechanical Characterisation of Titanium Metal Matrix Composites: A Literature Review. Journal of Composites Science. 2022; 6(12):388. https://doi.org/10.3390/jcs6120388
Chicago/Turabian StyleShetty, Raviraj, Adithya Hegde, Uday Kumar Shetty SV, Rajesh Nayak, Nithesh Naik, and Madhukar Nayak. 2022. "Processing and Mechanical Characterisation of Titanium Metal Matrix Composites: A Literature Review" Journal of Composites Science 6, no. 12: 388. https://doi.org/10.3390/jcs6120388