Comparison of Coronal Discoloration Induced by White MTA and CEM Cement
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nosrat, A.; Homayounfar, N.; Oloomi, K. Drawbacks and Unfavorable Outcomes of Regenerative Endodontic Treatments of Necrotic Immature Teeth: A Literature Review and Report of a Case. J. Endod. 2012, 38, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part III: Clinical applications, drawbacks, and mechanism of action. J. Endod. 2010, 36, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Felman, D.; Parashos, P. Coronal Tooth Discoloration and White Mineral Trioxide Aggregate. J. Endod. 2013, 39, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Krastl, G.; Allgayer, N.; Lenherr, P.; Filippi, A.; Taneja, P.; Weiger, R. Tooth discoloration induced by endodontic materials: A literature review. Dent. Traumatol. 2013, 29, 2–7. [Google Scholar] [CrossRef]
- Ioannidis, K.; Mistakidis, I.; Beltes, P.; Karagiannis, V. Spectrophotometric analysis of coronal discolouration induced by grey and white MTA. Int. Endod. J. 2013, 46, 137–144. [Google Scholar] [CrossRef]
- Karabucak, B.; Li, D.; Lim, J.; Iqbal, M. Vital pulp therapy with mineral trioxide aggregate. Dent. Traumatol. 2005, 21, 240–243. [Google Scholar] [CrossRef]
- Bogen, G.; Kim, J.S.; Bakland, L.K. Direct pulp capping with mineral trioxide aggregate: An observational study. J. Am. Dent. Assoc. 2008, 139, 305–315. [Google Scholar] [CrossRef]
- Asgary, S.; Parirokh, M.; Eghbal, M.J.; Brink, F. A Comparative Study of White Mineral Trioxide Aggregate and White Portland Cements Using X-ray Microanalysis. Aust. Endod. J. 2004, 30, 89–92. [Google Scholar] [CrossRef]
- Bogen, G.; Kuttler, S. Mineral Trioxide Aggregate Obturation: A Review and Case Series. J. Endod. 2009, 35, 777–790. [Google Scholar] [CrossRef]
- Bakland, L.K. Revisiting Traumatic Pulpal Exposure: Materials, Management Principles, and Techniques. Dent. Clin. N. Am. 2009, 53, 661–673. [Google Scholar] [CrossRef]
- Asgary, S.; Eghbal, M.J.; Parirokh, M.; Torabzadeh, H. Sealing Ability of Three Commercial Mineral Trioxide Aggregates and an Experimental Root-End Filling Material. Iran. Endod. J. 2006, 1, 101–105. [Google Scholar] [PubMed]
- Zanza, A.; D’Angelo, M.; Reda, R.; Gambarini, G.; Testarelli, L.; Di Nardo, D. An Update on Nickel-Titanium Rotary Instruments in Endodontics: Mechanical Characteristics, Testing and Future Perspective—An Overview. Bioengineering 2021, 8, 218. [Google Scholar] [CrossRef] [PubMed]
- Bhandi, S.; Mashyakhy, M.; Abumelha, A.; Alkahtany, M.; Jamal, M.; Chohan, H.; Raj, A.; Testarelli, L.; Reda, R.; Patil, S. Complete Obturation—Cold Lateral Condensation vs. Thermoplastic Techniques: A Systematic Review of Micro-CT Studies. Materials 2021, 14, 4013. [Google Scholar] [CrossRef] [PubMed]
- Utneja, S.; Nawal, R.R.; Talwar, S.; Verma, M. Current perspectives of bio-ceramic technology in endodontics: Calcium enriched mixture cement—review of its composition, properties and applications. Restor. Dent. Endod. 2015, 40, 1–13. [Google Scholar] [CrossRef]
- Asgary, S.; Eghbal, M.J.; Parirokh, M.; Ghanavati, F.; Rahimi, H. A comparative study of histologic response to different pulp capping materials and a novel endodontic cement. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008, 106, 609–614. [Google Scholar] [CrossRef]
- Asgary, S.; Ahmadyar, M. One-visit endodontic retreatment of combined external/internal root resorption using a calcium-enriched mixture. Gen. Dent. 2012, 60, e244–e248. [Google Scholar]
- Samiei, M.; Eghbal, M.J.; Parirokh, M.; Abbas, F.M.; Asgary, S. Repair of furcal perforation using a new endodontic cement. Clin. Oral Investig. 2010, 14, 653–658. [Google Scholar] [CrossRef]
- Asgary, S.; Ehsani, S. Permanent molar pulpotomy with a new endodontic cement: A case series. J. Conserv. Dent. 2009, 12, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Rouhani, A.; Akbari, M.; Farhadi-Faz, A. Comparison of Tooth Discoloration Induced by Calcium-Enriched Mixture and Mineral Trioxide Aggregate. Iran. Endod. J. 2016, 11, 175–178. [Google Scholar] [CrossRef]
- Godiny, M.; Araghi, S.; Khavid, A.; Saeidipour, M. In vitro evaluation of coronal discoloration following the application of calcium-enriched mixture cement, Biodentine, and mineral trioxide aggregate in endodontically treated teeth. Dent. Res. J. 2019, 16, 53. [Google Scholar] [CrossRef]
- Arman, M.; Khalilak, Z.; Rajabi, M.; Esnaashari, E.; Saati, K. In Vitro Spectrophotometry of Tooth Discoloration Induced by Tooth-Colored Mineral Trioxide Aggregate and Calcium-Enriched Mixture Cement. Iran. Endod. J. 2015, 10, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Madani, Z.; Alvandifar, S.; Bizhani, A. Evaluation of tooth discoloration after treatment with mineral trioxide aggregate, calcium-enriched mixture, and Biodentine® in the presence and absence of blood. Dent. Res. J. 2019, 16, 377–383. [Google Scholar]
- Roberts, H.W.; Toth, J.M.; Berzins, D.W.; Charlton, D.G. Mineral trioxide aggregate material use in endodontic treatment: A review of the literature. Dent. Mater. 2008, 24, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asgary, S.; Parirokh, M.; Eghbal, M.J.; Brink, F. Chemical Differences Between White and Gray Mineral Trioxide Aggregate. J. Endod. 2005, 31, 101–103. [Google Scholar] [CrossRef]
- Ertas, H.; Kucukyilmaz, E.; Ok, E.; Uysal, B. Push-out bond strength of different mineral trioxide aggregates. Eur. J. Dent. 2014, 8, 348–352. [Google Scholar] [CrossRef]
- Asgary, S.; Ahmadyar, M. Vital pulp therapy using calcium-enriched mixture: An evidence-based review. J. Conserv. Dent. 2013, 16, 92–98. [Google Scholar] [CrossRef]
- Cal, E.; Sonugelen, M.; Güneri, P.; Kesercioglu, A.; Köse, T. Application of a digital technique in evaluating the reliability of shade guides. J. Oral Rehabil. 2004, 31, 483–491. [Google Scholar] [CrossRef]
- O’Brien, W. Dental Materials and Their Selection, 2nd ed.; Quintessence: Chicago, IL, USA, 1997; pp. 28–30. [Google Scholar]
- Eghbal, M.J.; Torabzadeh, H.; Bagheban, A.A.; Shamszadeh, S.; Marvasti, L.A.; Asgary, S. Color stability of mineral trioxide aggregate and calcium enriched mixture cement. J. Investig. Clin. Dent. 2016, 4, 341–346. [Google Scholar] [CrossRef]
- Esmaeili, B.; Alaghehmand, H.; Kordafshari, T.; Daryakenari, G.; Ehsani, M.; Bijani, A. Coronal Discoloration Induced by Calcium-Enriched Mixture, Mineral Trioxide Aggregate and Calcium Hydroxide: A Spectrophotometric Analysis. Iran. Endod. J. 2016, 11, 23–28. [Google Scholar] [CrossRef]
- Farhang, R.; Hekmatfar, S.; Samadi, V.; Meraji, A.; Jafari, K. Comparison of Tooth Discoloration Induced by Calcium-enriched Mixture, Mineral Trioxide Aggregate, and Endocem. World J. Dent. 2020, 11, 392–395. [Google Scholar] [CrossRef]
- Asgary, S.; Eghbal, M.J.; Parirokh, M.; Ghoddusi, J.; Kheirieh, S.; Brink, F. Comparison of mineral trioxide aggregate’s composition with Portland cements and a new endodontic cement. J. Endod. 2009, 35, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Scholtanus, J.D.; Özcan, M.; Huysmans, M.-C.D. Penetration of amalgam constituents into dentine. J. Dent. 2009, 37, 366–373. [Google Scholar] [CrossRef]
- Scholtanus, J.D.; Özcan, M. Clinical longevity of extensive direct composite restorations in amalgam replacement: Up to 3.5 years follow-up. J. Dent. 2014, 42, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Enan, E.T.; Yousef, E.A. Discoloration of MTA Filled Teeth With and Without Dentine Bonding Agent. Ann. Int. Med. Dent. Res. 2018, 4, 34–37. [Google Scholar] [CrossRef]
- Watts, A.; Addy, M. Tooth discolouration and staining: A review of the literature. Br. Dent. J. 2001, 190, 309–316. [Google Scholar] [CrossRef]
- Hill, A.R. How we see colour. In Colour Physics for Industry; McDonald, R., Ed.; H. Charlesworth & Co Ltd.: Huddersfield, UK, 1987; pp. 211–281. [Google Scholar]
- Joiner, A. Tooth colour: A review of the literature. J. Dent. 2004, 32, 3–12. [Google Scholar] [CrossRef]
- Ahrari, F.; Akbari, M.; Mohammadpour, S.; Forghani, M. The efficacy of laser-assisted in-office bleaching and home bleaching on sound and demineralized enamel. Laser Ther. 2015, 24, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Bolt, R.A.; Ten Bosch, J.J.; Coops, J.C. Influence of window size in small-window colour measurements, particularly of teeth. Phys. Med. Biol. 1994, 39, 1133–1142. [Google Scholar] [CrossRef]
- Lath, D.L.; Guan, Y.H.; Lilley, T.H. Comparison of colorimetry and image analysis for quantifying tooth whiteness—A preliminary study. In Dental Morphology 2001; Brook, A., Ed.; Academic Press: Sheffield, UK, 2001; pp. 229–237. [Google Scholar]
- Gerlach, R.W.; Barker, M.L.; Sagel, P.A. Objective and subjective whitening response of two self-directed bleaching systems. Am. J. Dent. 2002, 15, 7A–12A. [Google Scholar]
Materials | wMTA (%) | CEM Cement (%) |
---|---|---|
CaO | 44.16 | 51.75 |
SiO2 | 21.25 | 6.32 |
Bi2O3 | 16.13 | ND |
Al2O3 | 1.87 | 0.93 |
Cl | 0.39 | 0.21 |
Na2O | 0.03 | 0.34 |
FeO | 0.39 | ND |
P2O5 | 0.27 | 8.49 |
SO3 | 0.55 | 9.53 |
MgO | 1.36 | 0.24 |
TiO2 | 0.09 | ND |
H2O and CO | 13.51 | 22.19 |
Time | Groups | Mean ± SD |
---|---|---|
Cervical discoloration at 24 h | MTA | 0.24 ± 0.47 |
CEM cement | 0.28 ± 0.92 | |
Positive Control | 0.28 ± 1.42 | |
Negative Control | 0.24 ± 1.73 | |
Cervical discoloration at 48 h | MTA | 0.86 ± 0.47 |
CEM cement | 0.67 ± 0.90 | |
Positive Control | 0.54 ± 1.52 | |
Negative Control | 0.23 ± 0.75 | |
Cervical discoloration at 1 week | MTA | 1.74 ± 1.48 |
CEM cement | 0.97 ± 2.03 | |
Positive Control | 1.41 ± 1.50 | |
Negative Control | 0.33 ± 0.72 | |
Cervical discoloration at 2 weeks | MTA | 2.57 ± 1.47 |
CEM cement | 1.42 ± 1.79 | |
Positive Control | 4.86 ± 1.39 | |
Negative Control | 0.31 ± 0.69 | |
Cervical discoloration at 4 weeks | MTA | 3.31 ± 1.45 |
CEM cement | 2.20 ± 1.95 | |
Positive Control | 6.59 ± 1.63 | |
Negative Control | 0.52 ± 0.91 | |
Cervical discoloration at 8 weeks | MTA | 4.50 ± 1.43 |
CEM cement | 3.94 ± 2.04 | |
Positive Control | 6.18 ± 1.52 | |
Negative Control | 0.47 ± 0.82 | |
Cervical discoloration at 16 weeks | MTA | 5.50 ± 1.43 |
CEM cement | 3.94 ± 2.04 | |
Positive Control | 6.18 ± 1.52 | |
Negative Control | 0.47 ± 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adel, M.; Aflaki, S.; Eghbal, M.J.; Darvish, A.; Golshiri, A.M.; Moradi Majd, N.; Reda, R.; Tofangchiha, M.; Zanza, A.; Testarelli, L. Comparison of Coronal Discoloration Induced by White MTA and CEM Cement. J. Compos. Sci. 2022, 6, 371. https://doi.org/10.3390/jcs6120371
Adel M, Aflaki S, Eghbal MJ, Darvish A, Golshiri AM, Moradi Majd N, Reda R, Tofangchiha M, Zanza A, Testarelli L. Comparison of Coronal Discoloration Induced by White MTA and CEM Cement. Journal of Composites Science. 2022; 6(12):371. https://doi.org/10.3390/jcs6120371
Chicago/Turabian StyleAdel, Mamak, Sareh Aflaki, Mohammad Jafar Eghbal, Alireza Darvish, Amanda Mandana Golshiri, Nima Moradi Majd, Rodolfo Reda, Maryam Tofangchiha, Alessio Zanza, and Luca Testarelli. 2022. "Comparison of Coronal Discoloration Induced by White MTA and CEM Cement" Journal of Composites Science 6, no. 12: 371. https://doi.org/10.3390/jcs6120371