Novel Reactive Flex Configuration in Kiwi Wing Foil Surfboard
Abstract
:1. Introduction
2. Methodology
3. Experimental Section
3.1. Three-Point Bending Test
3.2. Fuselage Flexural Tests
3.3. FEA Simulation
4. Results
4.1. Flexural Results
4.2. Simulation Results
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hexcel. HexPly Prepreg, FGU017c. 2013, p. 35. Available online: https://www.hexcel.com/user_area/content_media/raw/Prepreg_Technology.pdf (accessed on 11 November 2021).
- Meredith, J.; Bilson, E.; Powe, R.; Collings, E.; Kirwan, K. A performance versus cost analysis of prepreg carbon fibre epoxy energy absorption structures. Compos. Struct. 2015, 124, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Bari, K.; Loganathan, T.G. The Performance of Filava-Polysiloxane, Silres® H62C Composite in High Temperature Application. J. Compos. Sci. 2021, 5, 144. [Google Scholar] [CrossRef]
- Sakellariou, K.; Rana, Z.A.; Jenkins, K.W. Optimisation of the surfboard fin shape using computational fluid dynamics and genetic algorithms. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2017, 231, 344–354. [Google Scholar] [CrossRef]
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering, 8th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Hexcel. Airframe. 2011. Available online: https://www.airframer.com/news_story.html?release=14629 (accessed on 11 November 2021).
- Feraboli, P.; Peitso, E.; Cleveland, T.; Stickler, P.B. Modulus Measurement for Prepreg-based Discontinuous Carbon Fiber/Epoxy Systems. J. Compos. Mater. 2009, 43, 1947–1965. [Google Scholar] [CrossRef]
- Evans, A.D.; Qian, C.C.; Turner, T.A.; Harper, L.T.; Warrior, N.A. Flow characteristics of carbon fibre moulding compounds. Compos. Part A Appl. Sci. Manuf. 2016, 90, 1–12. [Google Scholar] [CrossRef]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Voss, B. Filava Fibre Material Data Sheet. 2019. Available online: www.isomatex.com (accessed on 11 November 2021).
Material | Tensile Properties | Poisson’s Ratio | Density (g/cm3) | Cost £/kg | |
---|---|---|---|---|---|
Strength (MPa) | Modulus (GPa) | ||||
Titanium (grade 2) | 344 | 105 | 0.37 | 4.51 | 50.5 |
CFRP-UD-Epoxy | 2000 | 130 | 0.25 | 1.53 | 16.35 |
HexMC-Epoxy | 300 | 38 | 0.30 | 1.55 | 12.35 |
Filava UD-Epoxy | 1700 | 95 | 0.24 | 2.6 | 15.5 |
CFRP-UD | HexMC | FQQ | F-UD/T | |
---|---|---|---|---|
Total weight (g) | 307 | 171.5 | 255.5 | 279 |
Core weight (g) | 29.5 | 29.7 | 29.3 | 23.6 |
Specimen | Length (l), mm | Width (b), mm | Thickness (h), mm | Support Span |
---|---|---|---|---|
HexMC | 100 | 15.4 | 2.0 | 40 h (80 mm) |
FQQ | 100 | 15.0 | 1.98 | 20 h (39 mm) |
Filava Twill | 100 | 15.1 | 2.1 | 20 h (42.0 mm) |
Carbon UD | 100 | 15.0 | 2.0 | 40 h (80 mm) |
Fuselage Part | Element Type | Number of Elements | Number of Nodes |
---|---|---|---|
Composite part | Cubic | 10,474 | 10,444 |
Foam core | Triangular | 10,751 | 18,179 |
Specimen | Displacement Set (mm) |
---|---|
HexMC | 2.55 |
FQQ | 9.40 |
F-UD/Twill | 8.23 |
CFRP-UD/Twill | 3.61 |
Specimen | Maximum Load (N) | Maximum Deflection (mm) | Ef (GPa) | σ(MPa) | ε (%) |
---|---|---|---|---|---|
CFRP-UD | 680 | 10.55 | 68.12 | 1224 | 1.98 |
HexMC | 505 | 10.40 | 51.74 | 810 | 1.95 |
FQQ | 450 | 13.51 | 33.75 | 675 | 4.5 |
Filava Twill | 380 | 12.20 | 32.4 | 517 | 4.27 |
Specimen | Maximum Load (N) | Maximum Deflection (mm) | Fuselage Mass (g) | Stiffness (MN/m) | Specific Stiffness (MN/m.kg) |
---|---|---|---|---|---|
HexMC | 1670 | 2.55 | 171.5 | 0.655 | 3.8 |
FQQ | 3530 | 9.40 | 255.5 | 0.37 | 1.44 |
F-UD/Twill | 3410 | 8.23 | 279 | 0.41 | 1.47 |
CFRP-UD/Twill | 6540 | 3.61 | 307 | 1.81 | 5.90 |
Specimen | Deflection (mm) | FEA Load (N) | Experiment Load (N) |
---|---|---|---|
HexMC | 2.55 | 5251 | 1670 |
FQQ | 9.40 | 3875 | 3530 |
F-UD/Twill | 8.23 | 2197 | 3410 |
CFRP-UD/Twill | 3.61 | 6936 | 6540 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fat Cheung, A.M.; Bari, K. Novel Reactive Flex Configuration in Kiwi Wing Foil Surfboard. J. Compos. Sci. 2022, 6, 6. https://doi.org/10.3390/jcs6010006
Fat Cheung AM, Bari K. Novel Reactive Flex Configuration in Kiwi Wing Foil Surfboard. Journal of Composites Science. 2022; 6(1):6. https://doi.org/10.3390/jcs6010006
Chicago/Turabian StyleFat Cheung, Adrien M., and Klaudio Bari. 2022. "Novel Reactive Flex Configuration in Kiwi Wing Foil Surfboard" Journal of Composites Science 6, no. 1: 6. https://doi.org/10.3390/jcs6010006
APA StyleFat Cheung, A. M., & Bari, K. (2022). Novel Reactive Flex Configuration in Kiwi Wing Foil Surfboard. Journal of Composites Science, 6(1), 6. https://doi.org/10.3390/jcs6010006