The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability
Abstract
:1. Introduction
2. Designing and Parameters of the Electrical Double Layer Capacitors (EDLCs)
2.1. Cell Capacitance CT
2.2. Equivalent Series Resistance (ESR)
2.3. Operating Voltage (VO)
3. Types and Properties of Porous Carbon Materials
3.1. Properties of Porous Carbon
3.1.1. Specific Surface Area
3.1.2. Porosity
3.1.3. Ash Content
3.2. Activated Carbon (AC)
3.3. Porous Carbon Synthesized Using Template Route
3.4. Effect of Activated Carbon Microstructure and Porous Texture on EDLC’s Performance
3.4.1. Impact of the Surface Texture on the Capacitance
3.4.2. Impact of the Activated Carbon Microstructure on the Equivalent Series Resistance
3.5. EDLCs Electrodes Performance Improvement by Heteroatoms Doping
3.5.1. Effect of Heteroatoms Doping on EDLCs Cell Performance
3.5.2. Effect of Heteroatoms Doping on the Wettability of Activated Carbon
3.5.3. Impact of Heteroatom Doping on the EDLCs Equivalent Series Resistance (RES)
3.6. Recent Advancements in Activated Carbon Composites
3.6.1. Activated Carbon/TiO2Composites
3.6.2. Activated Carbon/ZnO Composites
3.6.3. Activated Carbon/MoS2 Composites
3.6.4. Activated Carbon/MnO2 Composite
3.6.5. Activated Carbon/PANI Composites
3.7. Porous Carbon Aerogels
3.8. Carbide-Derived Carbons
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yadav, N.; Yadav, N.; Hashmi, S. Ionic liquidincorporated, redox-active blendpolymerelectrolyte for high energydensity quasi-solid-state carbonsupercapacitor. J. Power Sources 2020, 451, 227771. [Google Scholar] [CrossRef]
- Mohamed, I.M.; Yasin, A.S.; Liu, C. Synthesis, surface characterization and electrochemical performance of ZnO @ activatedcarbon as a supercapacitorelectrodematerial in acidic and alkalineelectrolytes. Ceram. Int. 2020, 46, 3912–3920. [Google Scholar] [CrossRef]
- Yadav, M.S.; Singh, N.; Kumar, A. Synthesis and characterization of zinc oxide nanoparticles and activatedcharcoalbasednanocomposite for supercapacitorelectrode application. J. Mater. Sci. Mater. Electron. 2018, 29, 6853–6869. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, J.; Wu, H.; Li, Q.; Fan, S.; Wang, J. Progress and challenges of flexible lithium ion batteries. J. Power Sources 2020, 454, 227932. [Google Scholar] [CrossRef]
- Pang, X.; Zhou, T.; Jiang, Q.; Kumar, P.; Geng, S.; Jia, M.; Zhou, J.; Liu, B.; Qin, H. PorousGraphitic Carbon Fibers for Fast-ChargingSupercapacitor Applications. Energy Technol. 2020, 8. [Google Scholar] [CrossRef]
- Chunyi, Z.; Liming, D. Flexible Energy Conversion and Storage Devices; Willey-VCH: Weinheim, Germany, 2018. [Google Scholar]
- Wang, J.; Zhang, X.; Li, Z.; Ma, Y.; Ma, L. Recent progress of biomass-derived carbon materials for supercapacitors. J. Power Sources 2020, 451, 227794. [Google Scholar] [CrossRef]
- Ma, F.; Ding, S.; Ren, H.; Liu, Y. Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Adv. 2019, 9, 2474–2483. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, D.; Zhang, Y.; He, J.; Wang, Y.; Wang, K.; Xu, Y.; Li, H.; Wang, Y. Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors. J. Power Sources 2020, 448. [Google Scholar] [CrossRef]
- Karnan, M.; Raj, A.G.K.; Subramani, K.; Santhoshkumar, S.; Sathish, M. The fascinating supercapacitive performance of activated carbon electrodes with enhanced energy density in multifarious electrolytes. Sustain. Energy Fuels 2020, 4, 3029–3041. [Google Scholar] [CrossRef]
- Available online: https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Book%3A_Physical_Methods_in_Chemistry_and_Nano_Science_(Barron)/02%3A_Physical_and_Thermal_Analysis/2.07%3A_Electrochemistry (accessed on 16 February 2021).
- Kim, B.K.; Sy, S.; Yu, A.; Zhang, J. Handbook of Clean Energy Systems; Yan, J., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2015. [Google Scholar]
- Mei, B.-A.; Munteshari, O.; Lau, J.; Dunn, B.; Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. J. Phys. Chem. C 2018, 122, 194–206. [Google Scholar] [CrossRef]
- Yu, H.; Tang, Q.; Wu, J.; Lin, Y.; Fan, L.; Huang, M.; Lin, J.; Li, Y.; Yu, F. Using eggshell membrane as a separator in supercapacitor. J. Power Sources 2012, 206, 463–468. [Google Scholar] [CrossRef]
- Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L.-C. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys. 2011, 13, 17615–17624. [Google Scholar] [CrossRef] [PubMed]
- Harry, M.; Francisco, R.R. Activated Carbon; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Aktaş, Ö.; Çeçen, F. Effect of type of carbon activation on adsorption and its reversibility. J. Chem. Technol. Biotechnol. 2005, 81, 94–101. [Google Scholar] [CrossRef]
- Suzuki, M. Adsorption Engineering; Elsevier: Amsterdam, The Netherlands, 1990. [Google Scholar]
- Channiwala, S.; Parikh, P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Mi, J.; Wang, X.-R.; Fan, R.-J.; Qu, W.-H.; Li, W.-C. Coconut-Shell-Based Porous Carbons with a Tunable Micro/Mesopore Ratio for High-Performance Supercapacitors. Energy Fuels 2012, 26, 5321–5329. [Google Scholar] [CrossRef]
- Liu, W.; Mei, J.; Liu, G.; Kou, Q.; Yi, T.-F.; Xiao, S. Nitrogen-Doped Hierarchical Porous Carbon from Wheat Straw for Supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 11595–11605. [Google Scholar] [CrossRef]
- He, X.; Ling, P.; Yu, M.; Wang, X.; Zhang, X.; Zheng, M. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim. Acta 2013, 105, 635–641. [Google Scholar] [CrossRef]
- Rufford, T.E.; Hulicova-Jurcakova, D.; Khosla, K.; Zhu, Z.; Lu, G.Q. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. J. Power Sources 2010, 195, 912–918. [Google Scholar] [CrossRef]
- Yang, C.-S.; Jang, Y.S.; Jeong, H.K. Bamboo-based activated carbon for supercapacitor applications. Curr. Appl. Phys. 2014, 14, 1616–1620. [Google Scholar] [CrossRef]
- Cordero, T.; Marquez, F.; Rodriguez-Mirasol, J.; Rodriguez, J. Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel 2001, 80, 1567–1571. [Google Scholar] [CrossRef]
- Elmouwahidi, A.; Bailón-García, E.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. Activated carbons from KOH and H 3 PO 4 -activation of olive residues and its application as supercapacitor electrodes. Electrochim. Acta 2017, 229, 219–228. [Google Scholar] [CrossRef]
- Jain, A.; Tripathi, S.K. Almond shell-based activated nanoporous carbon electrode for EDLCs. Ionics 2014, 21, 1391–1398. [Google Scholar] [CrossRef]
- Boumanchar, I.; Charafeddine, K.; Chhiti, Y.; Alaoui, F.E.M.; Sahibed-Dine, A.; Bentiss, F.; Jama, C.; Bensitel, M. Biomass higher heating value prediction from ultimate analysis using multiple regression and genetic programming. Biomass-Convers. Biorefinery 2019, 9, 499–509. [Google Scholar] [CrossRef]
- Li, X.; Xing, W.; Zhuo, S.; Zhou, J.; Li, F.; Qiao, S.-Z.; Lu, G.-Q. Preparation of capacitor’s electrode from sunflower seed shell. Bioresour. Technol. 2011, 102, 1118–1123. [Google Scholar] [CrossRef]
- Munir, S.; Daood, S.; Nimmo, W.; Cunliffe, A.; Gibbs, B. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour. Technol. 2009, 100, 1413–1418. [Google Scholar] [CrossRef]
- Tian, X.; Ma, H.; Li, Z.; Yan, S.; Ma, L.; Yu, F.; Wang, G.; Guo, X.; Ma, Y.; Wong, C. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. J. Power Sources 2017, 359, 88–96. [Google Scholar] [CrossRef]
- Bonelli, P.R. Slow Pyrolysis of Nutshells: Characterization of Derived Chars and of Process Kinetics. Energy Sources 2003, 25, 767–778. [Google Scholar] [CrossRef]
- Wei, X.; Wan, S.; Jiang, X.; Wang, Z.; Gao, S. Peanut-Shell-like Porous Carbon from Nitrogen-Containing Poly-N-phenylethanolamine for High-Performance Supercapacitor. ACS Appl. Mater. Interfaces 2015, 7, 22238–22245. [Google Scholar] [CrossRef]
- Jenkins, B.; Baxter, L.; Miles, T. Combustion properties of biomass. Fuel Process. Technol. 1998, 54, 17–46. [Google Scholar] [CrossRef]
- Sudhan, N.; Subramani, K.; Karnan, M.; Ilayaraja, N.; Sathish, M. Biomass-Derived Activated Porous Carbon from Rice Straw for a High-Energy Symmetric Supercapacitor in Aqueous and Non-aqueous Electrolytes. Energy Fuels 2017, 31, 977–985. [Google Scholar] [CrossRef]
- Yumak, T.; Yakaboylu, G.A.; Oginni, O.; Singh, K.; Ciftyurek, E.; Sabolsky, E.M. Comparison of the electrochemical properties of engineered switchgrass biomass-derived activated carbon-based EDLCs. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124150. [Google Scholar] [CrossRef]
- Phiri, J.; Dou, J.; Vuorinen, T.; Gane, P.A.C.; Maloney, T.C. Highly Porous Willow Wood-Derived Activated Carbon for High-Performance Supercapacitor Electrodes. ACS Omega 2019, 4, 18108–18117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masiá, A.T.; Buhre, B.; Gupta, R.; Wall, T. Characterising ash of biomass and waste. Fuel Process. Technol. 2007, 88, 1071–1081. [Google Scholar] [CrossRef]
- Wan, L.; Wei, W.; Xie, M.; Zhang, Y.; Li, X.; Xiao, R.; Chen, J.; Du, C. Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode. Electrochim. Acta 2019, 311, 72–82. [Google Scholar] [CrossRef]
- García, C.P.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Biomass proximate analysis using thermogravimetry. Bioresour. Technol. 2013, 139, 1–4. [Google Scholar] [CrossRef]
- Xiangyu, Y.; Manjusri, M.; Stefano, G.; Amar, K.M. Preparation of an Electric Double Layer Capacitor (EDLC) Using Miscanthus-Derived Biocarbon. ACS Sustain. Chem. Eng. 2018, 6, 318–324. [Google Scholar]
- Lin, Y.; Chen, Z.; Yu, C.; Zhong, W. Heteroatom-Doped Sheet-Like and Hierarchical Porous Carbon Based on Natural Biomass Small Molecule Peach Gum for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 3389–3403. [Google Scholar] [CrossRef]
- Hu, C.-C.; Wang, C.-C.; Wu, F.-C.; Tseng, R.-L. Characterization of pistachio shell-derived carbons activated by a combination of KOH and CO2 for electric double-layer capacitors. Electrochimica Acta 2007, 52, 2498–2505. [Google Scholar] [CrossRef]
- Vunain, E.; Kenneth, D.; Biswick, T. Synthesis and characterization of low-cost activated carbon prepared from Malawian baobab fruit shells by H3PO4 activation for removal of Cu(II) ions: Equilibrium and kinetics studies. Appl. Water Sci. 2017, 7, 4301–4319. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, N.; Mahamad, M.; Abbas, A.; Zaini, Z.; Akmar, Z. International Biodeterioration & Biodegrada-tion. Struc. Func. Serv. Manag. 2015, 102, 274–280. [Google Scholar]
- Sodtipinta, J.; Ieosakulrat, C.; Poonyayant, N.; Kidkhunthod, P.; Chanlek, N.; Amornsakchai, T.; Pakawatpanurut, P. Interconnected open-channel carbon nanosheets derived from pineapple leaf fiber as a sustainable active material for supercapacitors. Ind. Crop. Prod. 2017, 104, 13–20. [Google Scholar] [CrossRef]
- Fernandes, E.R.K.; Marangoni, C.; Souza, O.; Sellin, N. Thermochemical characterization of banana leaves as a potential energy source. Energy Convers. Manag. 2013, 75, 603–608. [Google Scholar] [CrossRef]
- Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S. From dead leaves to high energy density supercapacitors. Energy Environ. Sci. 2013, 6, 1249–1259. [Google Scholar] [CrossRef]
- Bello, O.S.; Adegoke, K.A.; Akinyunni, O.O. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Appl. Water Sci. 2017, 7, 1295–1305. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Luo, Y.; Xiao, Y.; Zhao, X.; Liang, Y.; Hu, H.; Dong, H.; Sun, L.; Liu, Y.; Zheng, M. Facile Synthesis of Three-Dimensional Heteroatom-Doped and Hierarchical Egg-Box-Like Carbons Derived from Moringa oleifera Branches for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 33060–33071. [Google Scholar] [CrossRef]
- Subramani, K.; Sudhan, N.; Karnan, M.; Sathish, M. Orange Peel Derived Activated Carbon for Fabrication of High-Energy and High-Rate Supercapacitors. ChemistrySelect 2017, 2, 11384–11392. [Google Scholar] [CrossRef]
- Köseoğlu, E.; Akmil-Başar, C. Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass. Adv. Powder Technol. 2015, 26, 811–818. [Google Scholar] [CrossRef]
- Lim, E.; Jo, C.; Lee, J. A mini review of designed mesoporous materials for energy-storage applications: From electric double-layer capacitors to hybrid supercapacitors. Nanoscale 2016, 8, 7827–7833. [Google Scholar] [CrossRef]
- Chen, X.; Wu, K.; Gao, B.; Xiao, Q.; Kong, J.; Xiong, Q.; Peng, X.; Zhang, X.; Fu, J. Three-Dimensional Activated Carbon Recycled from Rotten Potatoes for High-performance Supercapacitors. Waste Biomass-Valorization 2015, 7, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Aman, T.; Kazi, A.A.; Sabri, M.U.; Bano, Q. Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloids Surf. B Biointerfaces 2008, 63, 116–121. [Google Scholar] [CrossRef]
- Elmouwahidi, A.; Zapata-Benabithe, Z.; Carrasco-Marín, F.; Moreno-Castilla, C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresour. Technol. 2012, 111, 185–190. [Google Scholar] [CrossRef]
- Boujibar, O.; Ghosh, A.; Achak, O.; Chafik, T.; Ghamouss, F. A high energy storage supercapacitor based on nanoporous activated carbon electrode made from Argan shells with excellent ion transport in aqueous and non-aqueous electrolytes. J. Energy Storage 2019, 26, 100958. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Hyeon, T. Recent Progress in the Synthesis of Porous Carbon Materials. Adv. Mater. 2006, 18, 2073–2094. [Google Scholar] [CrossRef]
- Wan, L.; Wang, J.; Xie, L.; Sun, Y.; Li, K. Nitrogen-Enriched Hierarchically Porous Carbons Prepared from Polybenzoxazine for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2014, 6, 15583–15596. [Google Scholar] [CrossRef]
- Sun, L.; Tian, C.; Fu, Y.; Yang, Y.; Yin, J.; Wang, L.; Fu, H. Nitrogen-Doped Porous Graphitic Carbon as an Excellent Electrode Material for Advanced Supercapacitors. Chem. A Eur. J. 2014, 20, 564–574. [Google Scholar] [CrossRef]
- Fang, B.; Wei, Y.-Z.; Kumagai, M. Modified carbon materials for high-rate EDLCs application. J. Power Sources 2006, 155, 487–491. [Google Scholar] [CrossRef]
- Obreja, V.V.N. On the Performance of Supercapacitors with Electrodes Based on Carbon Nanotubes and Carbon Activated Material—A Review. Phys. E Low Dimens. Syst. Nanostruct. 2008, 40, 2596–2605. [Google Scholar] [CrossRef]
- Ji, F.; Wang, L.; Yang, J.; Wu, X.; Li, M.; Jiang, S.; Lin, S.; Chen, Z. Highly compact, free-standing porous electrodes from polymer-derived nanoporous carbons for efficient electrochemical capacitive deionization. J. Mater. Chem. A 2019, 7, 1768–1778. [Google Scholar] [CrossRef]
- Alaya, M.N.; Youssef, A.M.; Karman, M.; Abd El-AalA, H.E. Adsorption of Phenols onto Chemically-Activated Carbons Developed from Wild Cherry Stones. Carbon Sci. 2006, 7, 9–18. [Google Scholar]
- Raymundo-Piñero, E.; Leroux, F.; Béguin, F. A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer. Adv. Mater. 2006, 18, 1877–1882. [Google Scholar] [CrossRef]
- Qiao, W.; Yoon, S.-H.; Mochida, I. KOH Activation of Needle Coke to Develop Activated Carbons for High-Performance EDLC. Energy Fuels 2006, 20, 1680–1684. [Google Scholar] [CrossRef]
- Wang, M.-X.; Wang, C.-Y.; Chen, M.-M.; Wang, Y.-S.; Shi, Z.-Q.; Du, X.; Li, T.-Q.; Hu, Z.-J. Preparation of high-performance activated carbons for electric double layer capacitors by KOH activation of mesophase pitches. New Carbon Mater. 2010, 25, 285–290. [Google Scholar] [CrossRef]
- Li, G.; Gao, X.; Wang, K.; Cheng, Z. Porous carbon nanospheres with high EDLC capacitance. Diam. Relat. Mater. 2018, 88, 12–17. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, X.; Zhu, B.; Liu, P.-F.; Lu, H.-T. Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. J. Power Sources 2014, 268, 584–590. [Google Scholar] [CrossRef]
- Gao, X.; Xing, W.; Zhou, J.; Wang, G.; Zhuo, S.; Liu, Z.; Xue, Q.; Yan, Z. Superior capacitive performance of active carbons derived from Enteromorpha prolifera. Electrochim. Acta 2014, 133, 459–466. [Google Scholar] [CrossRef]
- Fang, B.; Binder, L. A Novel Carbon Electrode Material for Highly Improved EDLC Performance. J. Phys. Chem. B 2006, 110, 7877–7882. [Google Scholar] [CrossRef]
- Kwon, T.; Nishihara, H.; Itoi, H.; Yang, Q.-H.; Kyotani, T. Enhancement Mechanism of Electrochemical Capacitance in Nitrogen-/Boron-Doped Carbons with Uniform Straight Nanochannels. Langmuir 2009, 25, 11961–11968. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, G.; Deguchi, T.; Kanamori, K.; Kobayashi, Y.; Kageyama, H.; Abe, T.; Nakanishi, K. High-Level Doping of Nitrogen, Phosphorus, and Sulfur into Activated Carbon Monoliths and Their Electrochemical Capacitances. Chem. Mater. 2015, 27, 4703–4712. [Google Scholar] [CrossRef]
- Deng, Y.; Ji, Y.; Wu, H.; Chen, F. Enhanced electrochemical performance and high voltage window for supercapacitor based on multi-heteroatom modified porous carbon materials. Chem. Commun. 2018, 55, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Strelko, V.; Kuts, V.; Thrower, P. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon 2000, 38, 1499–1503. [Google Scholar] [CrossRef]
- Hulicova, D.; Kodama, M.; Hatori, H. Electrochemical Performance of Nitrogen-Enriched Carbons in Aqueous and Non-Aqueous Supercapacitors. Chem. Mater. 2006, 18, 2318–2326. [Google Scholar] [CrossRef]
- Szubzda, B.; Szmaja, A.; Halama, A. Influence of structure and wettability of supercapacitor electrodes carbon materials on their electrochemical properties in water and organic solutions. Electrochim. Acta 2012, 86, 255–259. [Google Scholar] [CrossRef]
- Seredych, M.; Hulicova-Jurcakova, D.; Lu, G.Q.; Bandosz, T.J. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 2008, 46, 1475–1488. [Google Scholar] [CrossRef]
- Lee, W.-H.; Moon, J.H. Monodispersed N-Doped Carbon Nanospheres for Supercapacitor Application. ACS Appl. Mater. Interfaces 2014, 6, 13968–13976. [Google Scholar] [CrossRef]
- Yi, J.; Qing, Y.; Wu, C.; Zeng, Y.; Wu, Y.; Lu, X.; Tong, Y. Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J. Power Sources 2017, 351, 130–137. [Google Scholar] [CrossRef]
- Si, W.; Zhou, J.; Zhang, S.; Li, S.; Xing, W.; Zhuo, S. Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim. Acta 2013, 107, 397–405. [Google Scholar] [CrossRef]
- Hulicova-Jurcakova, D.; Puziy, A.M.; Poddubnaya, O.I.; Suárez-García, F.; Tascón, J.M.D.; Lu, G.Q. Highly Stable Performance of Supercapacitors from Phosphorus-Enriched Carbons. J. Am. Chem. Soc. 2009, 131, 5026–5027. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; An, Z.; Wu, M.; Yuan, A.; Zhao, H.; Zhang, J.; Xu, J. Peony pollen derived nitrogen-doped activated carbon for supercapacitor application. Chin. Chem. Lett. 2020, 31, 1644–1647. [Google Scholar] [CrossRef]
- Niu, L.; Shen, C.; Yan, L.; Zhang, J.; Lin, Y.; Gong, Y.; Li, C.; Sun, C.Q.; Xu, S. Waste bones derived nitrogen–doped carbon with high micropore ratio towards supercapacitor applications. J. Colloid Interface Sci. 2019, 547, 92–101. [Google Scholar] [CrossRef]
- He, Z.Q.; Chen, D.D.; Wang, M.; Li, C.X.; Chen, X.Y.; Zhang, Z.J. Sulfur modification of carbon materials as well as the redox additive of Na2S for largely improving capacitive performance of supercapacitors. J. Electroanal. Chem. 2020, 856, 113678. [Google Scholar] [CrossRef]
- Elmouwahidi, A.; Castelo-Quibén, J.; Vivo-Vilches, J.F.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. Activated carbons from agricultural waste solvothermally doped with sulphur as electrodes for supercapacitors. Chem. Eng. J. 2018, 334, 1835–1841. [Google Scholar] [CrossRef]
- Ma, W.; Xie, L.; Dai, L.; Sun, G.; Chen, J.; Su, F.; Cao, Y.; Lei, H.; Kong, Q.; Chen, C.-M. Influence of phosphorus doping on surface chemistry and capacitive behaviors of porous carbon electrode. Electrochimica Acta 2018, 266, 420–430. [Google Scholar] [CrossRef]
- Ojha, D.P.; Poudel, M.B.; Kim, H.J. Investigation of electrochemical performance of a high surface area mesoporous Mn doped TiO2 nanoparticle for a supercapacitor. Mater. Lett. 2020, 264, 127363. [Google Scholar] [CrossRef]
- Charan, K.A.; Lakshmi, N.; Hussain, O.M.; Sreedhara, P.R. Electrospun TiO2 nanofiber electrodes for high performance supercapacitors. Mater. Res. Express 2020, 7, 015098. [Google Scholar]
- Pazhamalai, P.; Krishnamoorthy, K.; Mariappan, V.K.; Kim, S.-J. Blue TiO2 nanosheets as a high-performance electrode material for supercapacitors. J. Colloid Interface Sci. 2019, 536, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Sirengo, K.; Jande, Y.; Kibona, T.; Hilonga, A.; Muiva, C.; King’Ondu, C.K. Fish bladder-based activated carbon/Co3O4/TiO2 composite electrodes for supercapacitors. Mater. Chem. Phys. 2019, 232, 49–56. [Google Scholar] [CrossRef]
- Shrivastav, V.; Sundriyal, S.; Kim, K.; Sinha, R.K.; Tiwari, U.K.; Deep, A. Metal-organic frameworks-derived titanium dioxide–carbon nanocomposite for supercapacitor applications. Int. J. Energy Res. 2020, 44, 6269–6284. [Google Scholar] [CrossRef]
- Wu, G.; Song, Y.; Wan, J.; Zhang, C.; Yin, F. Synthesis of ultrafine ZnO nanoparticles supported on nitrogen-doped ordered hierarchically porous carbon for supercapacitor. J. Alloys Compd. 2019, 806, 464–470. [Google Scholar] [CrossRef]
- El Sharkawy, H.M.; Dhmees, A.S.; Tamman, A.; El Sabagh, S.; Aboushahba, R.; Allam, N.K. N-doped carbon quantum dots boost the electrochemical supercapacitive performance and cyclic stability of MoS2. J. Energy Storage 2020, 27, 101078. [Google Scholar] [CrossRef]
- Sangeetha, P.; Selvakumari, T.M.; Selvasekarapandian, S.; Srikumar, S.R.; Manjuladevi, R.; Mahalakshmi, M. Preparation and characterization of biopolymer K-carrageenan with MgCl2 and its application to electrochemical devices. Ionics 2020, 26, 233–244. [Google Scholar] [CrossRef]
- Wang, F.; Ma, J.; Zhou, K.; Li, X. MoS2/corncob-derived activated carbon for supercapacitor application. Mater. Chem. Phys. 2020, 244, 122215. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Song, X.; Dubal, D.P.; Zhao, X.; Zhang, D. Review on Carbon/Polyaniline Hybrids: Design and Synthesis for Supercapacitor. Molecules 2019, 24, 2263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadekar, P.H.; Khose, R.V.; Pethsangave, D.A.; Some, S. Waste-Derived Heteroatom-Doped Activated Carbon/Manganese Dioxide Trio-Composite for Supercapacitor Applications. Energy Technol. 2020, 8. [Google Scholar] [CrossRef]
- Choi, J.R.; Lee, J.W.; Yang, G.; Heo, Y.-J.; Park, S.-J. Activated Carbon/MnO2 Composites as Electrode for High Performance Supercapacitors. Catalysts 2020, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Yan, J.; Guang, Z.; Huang, Y.; Li, X.; Huang, W. Recent advancements of polyaniline-based nanocomposites for supercapacitors. J. Power Sources 2019, 424, 108–130. [Google Scholar] [CrossRef]
- Acharya, S.; Sahoo, S.; Sonal, S.; Lee, J.H.; Mishra, B.K.; Nayak, G. Adsorbed Cr(VI) based activated carbon/polyaniline nanocomposite: A superior electrode material for asymmetric supercapacitor device. Compos. Part B Eng. 2020, 193, 107913. [Google Scholar] [CrossRef]
- Chonat, A.; Palatty, S. Enhanced Electrochemical Performance of a Hybrid Supercapacitive Material Based on Ternary Doped Polyaniline/Activated Carbon Composite. Energy Fuels 2020. [Google Scholar] [CrossRef]
- Malkova, A.N.; Sipyagina, N.A.; Gozhikova, I.O.; Dobrovolsky, Y.A.; Konev, D.V.; Baranchikov, A.E.; Ivanova, O.S.; Ukshe, A.E.; Lermontov, S.A. Electrochemical Properties of Carbon Aerogel Electrodes: Dependence on Synthesis Temperature. Molecules 2019, 24, 3847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, I.; Kwon, D.; Kim, M.-S.; Jung, J.C. A comparative study of activated carbon aerogel and commercial activated carbons as electrode materials for organic electric double-layer capacitors. Carbon 2018, 132, 503–511. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, X.; Chen, M.; Shi, S.; Cao, Y. Preparing hierarchical porous carbon aerogels based on enzymatic hydrolysis lignin through ambient drying for supercapacitor electrodes. Microporous. Mesoporous. Mat. 2018, 265, 258–265. [Google Scholar] [CrossRef]
- Cai, T.; Kuang, L.; Wang, C.; Jin, C.; Wang, Z.; Sun, Q. Cellulose as an Adhesive for the Synthesis of Carbon Aerogel with a 3D Hierarchical Network Structure for Capacitive Energy Storage. ChemElectroChem 2019, 6, 2586–2594. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, J.; Cao, S.; Yu, S.; Huang, L. Heteroatom-doped hierarchical porous carbon aerogels from chitosan for high performance supercapacitors. Int. J. Biol. Macromol. 2020, 155, 131–141. [Google Scholar] [CrossRef]
- Jiaming, S.; Wei, L.; Lei, E.; Zhou, X.; Chunhui, M.; Zhenwei, W.; Shouxin, L. Ultralight carbon aerogel with tubular structures and N-containing sandwich-like wall from kapok fibers for supercapacitor electrode materials. J. Power Sources 2019, 438, 227030–227038. [Google Scholar]
- Wang, D.; Wei, F.; Shijia, Y.; Tianxi, L. Improving hierarchical porous structure of carbon aerogels for more efficient ion transport for supercapacitors with commercial level mass loading. Electrochim. Acta 2019, 323, 134811–134820. [Google Scholar] [CrossRef]
- Chi, W.; Yanshan, H.; Hao, P.; Jianzhong, J.; Xiangwen, Y.; Zhixiao, X.; Hao, T.; Sheng, H.; Wu, D. Nitrogen-doped porous carbon/graphene aerogel with much enhanced capacitive behaviors. Electrochim. Acta 2016, 215, 100–107. [Google Scholar]
- Oschatz, M.; Borchardt, L.; Pinkert, K.; Thieme, S.; Lohe, M.R.; Hoffmann, C.; Benusch, M.; Wisser, F.M.; Ziegler, C.; Giebeler, L.; et al. Hierarchical carbide-derived carbon foams with advanced mesostructure as a versatile electrochemical ener-gy-storage material. Energy Mater. 2014, 4, 1300645. [Google Scholar] [CrossRef]
- Rose, M.; Korenblit, Y.; Kockrick, E.; Borchardt, L.; Oschatz, M.; Kaskel, S.; Yushin, G. Hierarchical micro- and meso-porous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small 2011, 7, 1108–1117. [Google Scholar] [CrossRef]
- Tallo, I.; Thomberg, T.; Kurig, H.; Jänes, A.; Kontturi, K.; Lust, E. Supercapacitors based on carbide-derived carbons synthesised using HCl and Cl2 as reactants. J. Solid State Electrochem. 2012, 17, 19–28. [Google Scholar] [CrossRef]
Raw Material | Volatiles (wt%) | Carbon (wt%) | Ash (wt%) | Surface Area, SSA (m2/g) | Specific Capacitance (F/g) | Current Density/Scan Rate | Refs. |
---|---|---|---|---|---|---|---|
Coconut shell | 77.19 | 22.10 | 0.71 | 1532 | 228 | 5 mV/s | [19,20] |
Wheat straw | 82.12 | 10.98 | 6.90 | 892 | 222 | 8 A/g | [19,21] |
Rice husk | 61.81 | 16.95 | 21.24 | 1442 | 233 | 2 A/g | [19,22] |
Sugarcane bagasse | 83.66 | 13.15 | 3.20 | 1788 | 300 | 0.25 A/g | [19,23] |
Bamboo wood | 86.80 | 11.24 | 1.95 | 2960 | 144 | 5 A/g | [19,24] |
Olive stones | 78.30 | 19.50 | 2.20 | 1626 | 175 | 10 A/g | [25,26] |
Almond shell | 80.50 | 18.40 | 1.10 | 2144 | 334.2 | 10 mV/s | [25,27] |
Sunflower seed shell | 84.70 | 11.70 | 3.60 | 2509 | 311 | 0.25 A/g | [28,29] |
Cotton stalk | 76.10 | 18.80 | 5.10 | 1964.46 | 221 | 10 A/g | [30,31] |
Peanut shell | 84.90 | 13.40 | 1.70 | 3103 | 298 | 10 A/g | [32,33] |
Rice straw | 65.47 | 15.86 | 18.67 | 1007 | 190 | 10 A/g | [34,35] |
Switch grass | 76.69 | 14.34 | 8.97 | 1272 | 140 | 0.1 A/g | [34,36] |
Willow wood | 82.22 | 16.07 | 1.71 | 2800 | 394 | 1 A/g | [34,37] |
Corn straw | 73.15 | 19.19 | 7.65 | 2257 | 227 | 5 mV/g | [38,39] |
Rape straw | 76.54 | 17.81 | 4.65 | 748.6 | 361 | 1 A/g | [33,40] |
Miscanthus | 79 | 11.4 | 9.6 | 3024 | 110 | 50 mV/s | [41,42] |
Peach | 75.6 | 23.9 | 0.5 | 1279 | 406 | 0.2 A/g | [41,43] |
Pistachio shell | 81.64 | 16.95 | 1.41 | 2145 | 122 | 25 mV/s | [34,44] |
baobab fruit shells | - | 80 | 1,13 | 911 | 335.8 | 1 A/g | [24,45] |
pineapple leaves | - | 42.94 | 3.57 | 1681 | 202 | 5 mV/s | [46,47] |
Banana leaves | 41.3 | 46.5 | 12.2 | 1230 | 400 | 0.5 A/g | [48,49] |
Moringa oleifer | 36.45 | 42.76 | 12.71 | 2345 | 203 | 0.5 A/g | [50,51] |
Orange peels | 76.52 | 20.39 | 3.09 | 2160 | 460 | 1 A/g | [52,53] |
potato peels | 60.85 | 27.85 | 6.96 | 960 | 269 | 1 A/g | [54,55] |
argan shell | 61 | 28 | 1.5 | 2100 | 355 | 125 mA/g | [56,57] |
Almondshells | 76.00 | 20.71 | 3.29 | - | - | - | [19,20] |
Olive pitts | 82.00 | 16.28 | 1.72 | - | - | - | [19,21] |
Wet grains | 83.18 | 13.58 | 2.58 | - | - | - | [19,22] |
Marabú | 81.30 | 17.20 | 1.50 | - | - | - | [19,23] |
Soplillo | 77.80 | 20.70 | 1.50 | - | - | - | [19,24] |
Vmicropores [cm3/g] | Vmesopores + Vmacropores [cm3/g] | Specific Surface Area [m2/g] | Capacitance [F/g] | ERS (Ω) |
---|---|---|---|---|
0.20 | 0.02 | 400 | 14.0 | 8.3 |
0.57 | 0.06 | 1123 | 29.2 | 16.7 |
0.71 | 0.1 | 1412 | 29.6 | 25.0 |
1.27 | 0.13 | 2470 | 41.8 | - |
1.24 | 0.08 | 2400 | 42.0 | - |
1.25 | 0.11 | 2450 | 42.1 | - |
1.25 | 1.13 | 2454 | 42.3 | 83.3 |
1.28 | 0.18 | 2759 | 43.0 | 166,6 |
1.39 | 0.22 | 2906 | 44.0 | 187.5 |
Equivalent Serie Resistance (Ω) | Structural Disorder Degree (ID/IG) | Ref. |
---|---|---|
1.604 | 0.932 | [68] |
1.435 | 0.929 | |
1.108 | 0.921 | |
0.952 | 0.915 | |
0.809 | 0.921 | |
0.77 | 1.04 | [59] |
0.65 | 0.97 | |
0.61 | 0.92 | |
0.38 | 0.9 | |
0.73 | 1.42 | [70] |
0.58 | 1.11 |
Precursor | Heteroatom-Doping | Activating Agent | Electrolyte | ESR (Ω) | Capacitance (F/g) | Ref. |
---|---|---|---|---|---|---|
Bio-wastebones | Nitrogen | KOH | 6 mol/L KOH | - | 302 | [83] |
Peony pollen | Nitrogen | KOH | 6 mol/L KOH | 0.59 | 209 | [84] |
Lignocellulose | Phosphorous | ZnCL2 | 6 mol/L KOH | 2.03 | 133 | [77] |
Fruit stones | Phosphorous | H3PO4 | 1 mol/L H2SO4 | - | 192 | [79] |
Commercial activated carbon | Sulfur | - | 6 mol/L KOH | - | 207 | [85] |
Olive stones | Sulfur | KOH | 1 mol/L H2SO4 | 0.32 | 325 | [86] |
Rape pollen | Nitrogen/ Sulfur | ZnCL2/FeCl3 | 6 mol/L KOH | 2.9 | 361 | [39] |
Ultrapure anthracite | Phosphorous | KOH/H3PO4 | 1 mol/L Et4NBF4/PC | 0.015 | 121 | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dujearic-Stephane, K.; Gupta, M.; Kumar, A.; Sharma, V.; Pandit, S.; Bocchetta, P.; Kumar, Y. The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability. J. Compos. Sci. 2021, 5, 66. https://doi.org/10.3390/jcs5030066
Dujearic-Stephane K, Gupta M, Kumar A, Sharma V, Pandit S, Bocchetta P, Kumar Y. The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability. Journal of Composites Science. 2021; 5(3):66. https://doi.org/10.3390/jcs5030066
Chicago/Turabian StyleDujearic-Stephane, Kouao, Meenal Gupta, Ashwani Kumar, Vijay Sharma, Soumya Pandit, Patrizia Bocchetta, and Yogesh Kumar. 2021. "The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability" Journal of Composites Science 5, no. 3: 66. https://doi.org/10.3390/jcs5030066
APA StyleDujearic-Stephane, K., Gupta, M., Kumar, A., Sharma, V., Pandit, S., Bocchetta, P., & Kumar, Y. (2021). The Effect of Modifications of Activated Carbon Materials on the Capacitive Performance: Surface, Microstructure, and Wettability. Journal of Composites Science, 5(3), 66. https://doi.org/10.3390/jcs5030066