Comparative DFT Study of Lignocellulosic Binders on N- and S-Monodoped Graphene for Sustainable Li-Ion Battery Electrodes
Abstract
1. Introduction
2. Computational Details
2.1. System Selection and Model Generation
2.2. Geometric Optimization Protocol
2.3. Single-Point Energy and Interaction Energy Calculations
2.4. Topological Analysis and Local Functions
3. Results and Discussion
3.1. Comparison of Theoretical Methods
3.2. Optimized Structures
3.3. HOMO–LUMO Calculations
3.4. Molecular Electrostatic Potential
3.5. Electronic Localization Function (ELF) Maps
3.6. Relief Maps of the Localized Orbital Locator (LOL)
3.7. Interaction Energy
3.8. AIM Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, X.; Zhong, W. Biomaterials for High-Energy Lithium-Based Batteries: Strategies, Challenges, and Perspectives. Adv. Energy Mater. 2019, 9, 1901774. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Q.; Guo, X.; Yang, S.; Chen, A.; Liang, G.; Zhi, C. Strategies of binder design for high-performance lithium-ion batteries: A mini review. Rare Met. 2021, 41, 745–761. [Google Scholar] [CrossRef]
- Nguyen, V.A.; Kuss, C. Review—Conducting Polymer-Based Binders for Lithium-Ion Batteries and Beyond. J. Electrochem. Soc. 2020, 167, 065501. [Google Scholar] [CrossRef]
- Dou, W.; Zheng, M.; Zhang, W.; Liu, T.; Wang, F.; Wan, G.; Liu, Y.; Tao, X. Review on the Binders for Sustainable High-Energy-Density Lithium Ion Batteries: Status, Solutions, and Prospects. Adv. Funct. Mater. 2023, 33, 2305161. [Google Scholar] [CrossRef]
- Wang, M.; Liu, K.; Yu, J.; Zhang, Q.; Zhang, Y.; Valix, M.; Tsang, D.C. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal. Glob. Chall. 2023, 7, 2200237. [Google Scholar] [CrossRef]
- Wang, M.; Tan, Q.; Liu, L.; Li, J. A Facile, Environmentally Friendly, and Low-Temperature Approach for Decomposition of Polyvinylidene Fluoride from the Cathode Electrode of Spent Lithium-ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 12799–12806. [Google Scholar] [CrossRef]
- Jin, C.; Nai, J.; Sheng, O.; Yuan, H.; Zhang, W.; Tao, X.; Lou, X.W. Biomass-based materials for green lithium secondary batteries. Energy Environ. Sci. 2021, 14, 1326–1379. [Google Scholar] [CrossRef]
- Tao, X.S.; Chu, F.; Wang, S.; Fang, X.; Zhang, J.; Meng, J.; Sha, J.; Chen, Y. Advances in high-temperature shock technology for structural engineering of electrode materials: A review. Energy Z 2025, 1, 100003. [Google Scholar] [CrossRef]
- Kim, Y.; Nam, S.; Jeon, Y.; Jung, J.; Han, D.-Y.; Park, S. Improving silicon anode durability through uniform dispersion and binding enhancement with polyacrylamide-grafted carbon nanotubes. Energy Mater. 2025, 5, 500071. [Google Scholar] [CrossRef]
- Weir, A.; Carrión, A.J.d.B.; Queffélec, C.; Bujoli, B.; Chailleux, E.; Uguna, C.; Snape, C.; Airey, G. Renewable binders from waste biomass for road construction: A review on thermochemical conversion technologies and current developments. Constr. Build. Mater. 2022, 330, 127076. [Google Scholar] [CrossRef]
- Qiu, L.; Shao, Z.; Wang, D.; Wang, F.; Wang, W.; Wang, J. Novel polymer Li-ion binder carboxymethyl cellulose derivative enhanced electrochemical performance for Li-ion batteries. Carbohydr. Polym. 2014, 112, 532–538. [Google Scholar] [CrossRef]
- Paganelli, S.; Massimi, N.; Di Michele, A.; Piccolo, O.; Rampazzo, R.; Facchin, M.; Beghetto, V. Use of carboxymethyl cellulose as binder for the production of water-soluble catalysts. Int. J. Biol. Macromol. 2024, 270, 132541. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, S.H.; Ahn, K.H. Role of carboxymethyl cellulose binder and its effect on the preparation process of anode slurries for Li-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2023, 664, 131130. [Google Scholar] [CrossRef]
- Luo, C.; Du, L.; Wu, W.; Xu, H.; Zhang, G.; Li, S.; Wang, C.; Lu, Z.; Deng, Y. Novel Lignin-Derived Water-Soluble Binder for Micro Silicon Anode in Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2018, 6, 12621–12629. [Google Scholar] [CrossRef]
- Kumar, Y.A.; Alagarasan, J.K.; Ramachandran, T.; Rezeq, M.; Bajaber, M.A.; Alalwiat, A.A.; Moniruzzaman; Lee, M. The landscape of energy storage: Insights into carbon electrode materials and future directions. J. Energy Storage 2024, 86, 111119. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, J.; Ji, D.; Li, J.; Zhao, S.; Zhao, Y.; Cai, Z.; He, X.; Sun, X. Carbonaceous electrode materials for supercapacitor: Preparation and surface functionalization. Front. Energy Res. 2023, 10, 957032. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, W.; Lu, B.; Cheng, Z.; Cao, H.; Li, J.; Fan, Z.; An, X. Controllable heteroatoms doped electrodes engineered by biomass based carbon for advanced supercapacitors: A review. Biomass-Bioenergy 2024, 186, 107265. [Google Scholar] [CrossRef]
- Wang, J.; Han, W. A Review of Heteroatom Doped Materials for Advanced Lithium-Sulfur Batteries. Adv. Funct. Mater. 2021, 32, 2107166. [Google Scholar] [CrossRef]
- Ai, W.; Luo, Z.; Jiang, J.; Zhu, J.; Du, Z.; Fan, Z.; Xie, L.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction. Adv. Mater. 2014, 26, 6186–6192. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Yu, B.; Li, Z.; Zhao, Y. Density Functional Theory for Battery Materials. Energy Environ. Mater. 2019, 2, 264–279. [Google Scholar] [CrossRef]
- Fernández, J.A.H.; Palomo, J.A.P. Synthesis and Characterization of MAPTAC-Modified Cationic Corn Starch: An Integrated DFT-Based Experimental and Theoretical approach for wastewater treatment applications. J. Compos. Sci. 2025, 9, 240. [Google Scholar] [CrossRef]
- Montejo-Alvaro, F.; Oliva, J.; Herrera-Trejo, M.; Hdz-García, H.M.; Mtz-Enriquez, A.I. DFT study of small gas molecules adsorbed on undoped and N-, Si-, B-, and Al-doped graphene quantum dots. Theor. Chem. Acc. 2019, 138, 37. [Google Scholar] [CrossRef]
- Fernández, J.A.H.; Palomo, J.A.P.; Ortega-Toro, R. Application of DFT and Experimental Tests for the Study of Compost Formation Between Chitosan-1,3-dichloroketone with Uses for the Removal of Heavy Metals in Wastewater. J. Compos. Sci. 2025, 9, 91. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01. Fox, D.J. GaussView 5.0. Gaussian, Inc.: Wallingford, CT, 2016. Available online: https://scirp.org/reference/referencespapers?referenceid=2418053 (accessed on 20 November 2025).
- Chen, Z.; Li, S.; Zhang, G.; Yang, Y.; Qian, Y. Renewable lignocellulose based binders for advanced battery systems. Green Chem. 2024, 26, 9993–10005. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, D. Interaction of modified nucleic bases with graphene and doped graphenes: A DFT study. Bull. Mater. Sci. 2020, 43, 1–16. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, D.; Cui, T.; Li, D. Stability of hydrogen-terminated graphene edges. Phys. Chem. Chem. Phys. 2021, 23, 13261–13266. [Google Scholar] [CrossRef] [PubMed]
- Deokar, G.; Jin, J.; Schwingenschlögl, U.; Costa, P.M.F.J. Chemical vapor deposition-grown nitrogen-doped graphene’s synthesis, characterization and applications. npj 2D Mater. Appl. 2022, 6, 1–17. [Google Scholar] [CrossRef]
- Gong, Y.; Ma, W.; Xu, Z.; Wang, Y. Understanding the interaction of N-doped graphene and sulfur compounds in a lithium-sulfur battery: A density functional theory investigation. New J. Chem. 2022, 46, 12300–12310. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwon, S.H.; Kwon, S.; Cho, M.; Kim, K.H.; Han, T.H.; Lee, S.G. Tunable Electronic Properties of nitrogen and sulfur doped graphene: Density Functional Theory Approach. Nanomaterials 2019, 9, 268. [Google Scholar] [CrossRef]
- Hanuza, J.; Godlewska, P.; Lisiecki, R.; Ryba-Romanowski, W.; Kadłubański, P.; Lorenc, J.; Łukowiak, A.; Macalik, L.; Gerasymchuk, Y.; Legendziewicz, J. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 196, 202–208. [Google Scholar] [CrossRef]
- Wu, J.; Kucukkal, M.U.; Clark, A.E. H2 Adsorbed Site-to-Site Electronic Delocalization within IRMOF-1: Understanding Non-Negligible Interactions at High Pressure. Materials 2016, 9, 578. [Google Scholar] [CrossRef]
- Farrokhpour, H.; Jouypazadeh, H. Description of adenine and cytosine on Au(111) nano surface using different DFT functionals (PW91PW91, wB97XD, M06-2X, M06-L and CAM-B3LYP) in the framework of ONIOM scheme: Non-periodic calculations. Chem. Phys. 2017, 488–489, 1–10. [Google Scholar] [CrossRef]
- Jackson, K.; Jaffar, S.K.; Paton, R.S. Computational organic chemistry. Annu. Rep. Sect. B Org. Chem. 2013, 109, 235–255. [Google Scholar] [CrossRef]
- Mudedla, S.K.; Balamurugan, K.; Subramanian, V. Computational Study on the Interaction of Modified Nucleobases with Graphene and Doped Graphenes. J. Phys. Chem. C 2014, 118, 16165–16174. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists. Multiwfn. J. Chem. Phys. 2024, 161. [Google Scholar] [CrossRef]
- Popelier, P.L.A.; Aicken, F.M.; O’Brien, S. Atoms in Molecules. ResearchGate, 2000. Available online: https://www.researchgate.net/publication/313666825_Atoms_in_molecules (accessed on 20 November 2025).
- Chocks, J. Atoms_in_Molecules_A_Quantum_Theory_1990_Bader, Scribd. Available online: https://es.scribd.com/document/477366285/Atoms-in-Molecules-A-Quantum-Theory-1990-Bader (accessed on 20 November 2025).
- Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. ELF: The Electron Localization Function. Angew. Chem. Int. Ed. Engl. 1997, 36, 1808–1832. [Google Scholar] [CrossRef]
- Jacobsen, H. Localized-orbital locator (LOL) profiles of chemical bonding. Can. J. Chem. 2008, 86, 695–702. [Google Scholar] [CrossRef]
- Arulaabaranam, K.; Mani, G.; Muthu, S. Computational assessment on wave function (ELF, LOL) analysis, molecular confirmation and molecular docking explores on 2-(5-Amino-2- Methylanilino)-4-(3-pyridyl) pyrimidine. Chem. Data Collect. 2020, 29, 100525. [Google Scholar] [CrossRef]
- Alsaati, S.; Abdoon, R.S.; Hussein, E.H.; Abduljalil, H.M.; Mohammad, R.K.; Al-Seady, M.A.; Jasim, A.N.; Saleh, N.A.-H.; Allan, L. Unveiling the potential of graphene and S-doped graphene nanostructures for toxic gas sensing and solar sensitizer cell devices: Insights from DFT calculations. J. Mol. Model. 2024, 30, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Safronov, A.P.; Tyukova, I.S.; Suvorova, A.I. The nature of thermodynamic compatibility of components of aqueous solutions of starch and cellulose carboxymethyl derivatives. Polym. Sci. Ser. A 2009, 51, 174–181. [Google Scholar] [CrossRef]
- Zhang, Z.; Duan, H.; Zhang, Y.; Guo, X.; Yu, X.; Zhang, X.; Rahman, M.; Cai, J. Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses. Energy 2020, 207, 118290. [Google Scholar] [CrossRef]
- Choi, S.-M.; Jhi, S.-H.; Son, Y.-W. Controlling Energy Gap of Bilayer Graphene by Strain. Nano Lett. 2010, 10, 3486–3489. [Google Scholar] [CrossRef] [PubMed]
- Shemella, P.; Zhang, Y.; Mailman, M.; Ajayan, P.M.; Nayak, S.K. Energy gaps in zero-dimensional graphene nanoribbons. Appl. Phys. Lett. 2007, 91, 042101. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, M.; Pu, J.; He, Z.; Xiong, L. A new strategy for achieving N modified graphene and as protective coating for Cu: First-principles investigations. Surf. Interfaces 2021, 24, 101048. [Google Scholar] [CrossRef]
- Lin, C. Theoretical study of nitrogen-doped graphene nanoflakes: Stability and spectroscopy depending on dopant types and flake sizes. J. Comput. Chem. 2018, 39, 1387–1397. [Google Scholar] [CrossRef]
- Witjaksono, G.; Junaid, M.; Khir, M.H.; Ullah, Z.; Tansu, N.; Saheed, M.S.B.M.; Siddiqui, M.A.; Ba-Hashwan, S.S.; Algamili, A.S.; Magsi, S.A.; et al. Effect of Nitrogen Doping on the Optical Bandgap and Electrical Conductivity of Nitrogen-Doped Reduced Graphene Oxide. Molecules 2021, 26, 6424. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, W.; Shan, X.; Li, Z. Preparation of a porous graphene oxide/alkali lignin aerogel composite and its adsorption properties for methylene blue. Int. J. Biol. Macromol. 2020, 143, 325–333. [Google Scholar] [CrossRef]
- Liu, H.; Tian, X.; Xiang, X.; Chen, S. Preparation of carboxymethyl cellulose/graphene composite aerogel beads and their adsorption for methylene blue. Int. J. Biol. Macromol. 2022, 202, 632–643. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, J.; Jiang, X. Green synthesis of 3D porous graphene/lignin composites with improved adsorption capacity for heavy metal ions in aqueous solution. Desalinat. Water Treat. 2018, 103, 175–181. [Google Scholar] [CrossRef]
- Gan, L.; Zhou, M.; Yang, D.; Qiu, X. Adsorption characteristics of carboxymethylated lignin at a hydrophobic solid/water interface. Iran. Polym. J. 2013, 23, 47–52. [Google Scholar] [CrossRef]
- Koch, U.; Popelier, P.L.A. Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density. J. Phys. Chem. 1995, 99, 9747–9754. [Google Scholar] [CrossRef]
- Latosińska, J.N.; Seliger, J.; Žagar, V.; Burchardt, D.V. A comparative study of the hydrogen-bonding patterns and prototropism in solid 2-thiocytosine (potential antileukemic agent) and cytosine, as studied by 1H-14N NQDR and QTAIM/DFT. J. Mol. Model. 2011, 18, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Hackenstrass, K.; Jonasson, N.T.; Hartwig-Nair, M.; Rosén, T.; Florisson, S.; Wohlert, M. Analysing π-π stacking interactions in lignin nanoparticles from molecular simulations—Insights and lessons learned. Faraday Discuss. 2025, 263, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhao, Y.; Shan, S.; Yang, X.; Liu, D.; Cui, F.; Xing, B. Theoretical insight into the adsorption of aromatic compounds on graphene oxide. Environ. Sci. Nano 2018, 5, 2357–2367. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Wang, Y.-B. Noncovalent π⋅⋅⋅π interaction between graphene and aromatic molecule: Structure, energy, and nature. J. Chem. Phys. 2014, 140, 094302. [Google Scholar] [CrossRef]
- Petrushenko, I.K. A DFT Study of Hydrogen Adsorption onto Graphene: Effect of Nitrogen Doping. J. Nano-Electron. Phys. 2017, 9, 03018-1-03018-5. [Google Scholar] [CrossRef]
- Pham, T.T.; Chihaia, V.; Vu, Q.A.; Trinh, T.T.; Pham, T.T.; Van Thang, L.; Son, D.N. How do the doping concentrations of N and B in graphene modify the water adsorption? RSC Adv. 2021, 11, 19560–19568. [Google Scholar] [CrossRef]
- Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, S. Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction. ACS Nano 2011, 6, 205–211. [Google Scholar] [CrossRef]
- Hidayat, Y.; Rahmawati, F.; Heraldy, E.; Nugrahaningtyas, K.; Nurcahyo, I. The Effect of Sulphur (S) Doping and K+ Adsorption to the Electronic Properties of Graphene: A Study by DFTB Method. J. Ris. Kim. 2022, 13, 130–137. [Google Scholar] [CrossRef]
- Hernandez-Fernandez, J.; Lambis, H.; Reyes, R.V. Application of Pyrolysis for the Evaluation of Organic Compounds in Medical Plastic Waste Generated in the City of Cartagena-Colombia Applying TG-GC/MS. Int. J. Mol. Sci. 2023, 24, 5397. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.A.H.; Palomo, J.A.P.; Ortega-Toro, R. Application of Computational Studies Using Density Functional Theory (DFT) to Evaluate the Catalytic Degradation of Polystyrene. Polymers 2025, 17, 923. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.A.; Pérez, J.S.G.; Marquez, E. Computational Study of Graphene Quantum Dots (GQDs) Functionalized with Thiol and Amino Groups for the Selective Detection of Heavy Metals in Wastewater. Molecules 2025, 30, 4661. [Google Scholar] [CrossRef]
- Fernández, J.A.H.; Palomo, J.A.P.; Toloza, C.A.T. Theoretical/Experimental Study of the Heavy Metals in Poly(vinylalcohol)/Carboxymethyl Starch-g-Poly(vinyl imidazole)-Based Magnetic Hydrogel Microspheres. J. Compos. Sci. 2025, 9, 193. [Google Scholar] [CrossRef]










| Graphene Molecules | CAM-B3LYP | M06-2X | ωB97XD | |
|---|---|---|---|---|
| Graphene | E. System | −2525.070242 | −2525.631416 | −2525.602649 |
| E. Enthalpy | −2525.069298 | −2525.630472 | −2525.601705 | |
| E. Entropy | 192.301 | 195.952 | 193.928 | |
| E. Gibbs | −2525.160667 | −2525.723575 | −2525.693847 | |
| Graphene-N | E. System | −2541.667447 | −2542.218369 | −2542.192991 |
| E. Enthalpy | −2541.666503 | −2542.217424 | −2542.192047 | |
| E. Entropy | 195.931 | 199.227 | 197.468 | |
| E. Gibbs | −2541.759595 | −2542.312084 | −2542.285870 | |
| Graphene-S | E. System | −2496.887002 | −2497.426230 | −2497.438151 |
| E. Enthalpy | −2496.886058 | −2497.425286 | −2497.437206 | |
| E. Entropy | 197.623 | 200.263 | 198.944 | |
| E. Gibbs | −2496.979955 | −2497.520437 | −2497.531731 | |
| Binders | CAM-B3LYP | M06-2X | ωB97XD | |
|---|---|---|---|---|
| CMC | E. System | −914.305956 | −914.340581 | −914.393782 |
| E. Enthalpy | −914.305012 | −914.339637 | −914.392838 | |
| E. Entropy | 127.146 | 127.343 | 126.777 | |
| E. Gibbs | −914.365423 | −914.400142 | −914.453073 | |
| LCnA | E. System | −613.310837 | −613.374933 | −613.417156 |
| E. Enthalpy | −613.309893 | −613.373989 | −613.416212 | |
| E. Entropy | 114.181 | 114.236 | 114.975 | |
| E. Gibbs | −613.364144 | −613.428266 | −613.470840 | |
| LSiA | E. System | −727.727454 | −727.794325 | −727.844400 |
| E. Enthalpy | −727.726510 | −727.793381 | −727.843456 | |
| E. Entropy | 127.493 | 128.242 | 128.308 | |
| E. Gibbs | −727.787086 | −727.854313 | −727.904419 | |
| Molecule | HOMO (eV) | LUMO (eV) | EL–EH (eV) |
|---|---|---|---|
| Graphene | −0.24528 | −0.05476 | 0.19052 |
| CMC | −0.35190 | 0.04151 | 0.39341 |
| LCnA | −0.27421 | 0.03403 | 0.30824 |
| LSiA | −0.26704 | 0.03449 | 0.30153 |
| Graphene-N | −0.17806 | −0.03369 | 0.14437 |
| Graphene-S | −0.21082 | −0.06724 | 0.14358 |
| Superficie | CMC | LCnA | LSiA |
|---|---|---|---|
| Graphene | −23.7 | −26.3 | −30.4 |
| Graphene-N1 | −25.7 | −26.6 | −31.1 |
| Graphene-S1 | −24.1 | −22.6 | −30.6 |
| Molecule | Binder | PC | ∇2PC | H | V | G | |V|/G |
|---|---|---|---|---|---|---|---|
| Graphene | CMC | 4.14 × 10−2 | 1.51 × 10−1 | 3.98 × 10−3 | −2.97 × 10−2 | 3.37 × 10−2 | 8.82 × 10−1 |
| LCnA | 1.32 × 100 | 1.26 × 100 | −7.46 × 10−1 | −1.81 × 100 | 1.06 × 100 | 1.70 × 100 | |
| LSiA | 2.44 × 10−1 | 7.96 × 10−1 | −2.96 × 10−3 | −2.05 × 10−1 | 2.02 × 10−1 | 1.01 × 100 | |
| Graphene-N1 | CMC | 6.77 × 10−2 | 2.40 × 10−1 | 4.89 × 10−3 | −5.03 × 10−2 | 5.52 × 10−2 | 9.11 × 10−1 |
| LCnA | 1.25 × 10−1 | 4.63 × 10−1 | 1.55 × 10−2 | −8.49 × 10−2 | 1.00 × 10−1 | 8.46 × 10−1 | |
| LSiA | 1.45 × 10−1 | 5.29 × 10−1 | 8.14 × 10−3 | −1.16 × 10−1 | 1.24 × 10−1 | 9.34 × 10−1 | |
| Graphene-S1 | CMC | 1.04 × 10−1 | 4.46 × 10−1 | 1.43 × 10−2 | −8.30 × 10−2 | 9.73 × 10−2 | 8.53 × 10−1 |
| LCnA | 1.17 × 10−1 | 4.37 × 10−1 | 1.59 × 10−2 | −7.73 × 10−2 | 9.32 × 10−2 | 8.29 × 10−1 | |
| LSiA | 2.33 × 10−1 | 7.80 × 10−1 | −1.40 × 10−2 | −2.23 × 10−1 | 2.09 × 10−1 | 1.07 × 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fernández, J.A.H.; Carrascal, J.; Palomo, J.A.P. Comparative DFT Study of Lignocellulosic Binders on N- and S-Monodoped Graphene for Sustainable Li-Ion Battery Electrodes. J. Compos. Sci. 2026, 10, 70. https://doi.org/10.3390/jcs10020070
Fernández JAH, Carrascal J, Palomo JAP. Comparative DFT Study of Lignocellulosic Binders on N- and S-Monodoped Graphene for Sustainable Li-Ion Battery Electrodes. Journal of Composites Science. 2026; 10(2):70. https://doi.org/10.3390/jcs10020070
Chicago/Turabian StyleFernández, Joaquín Alejandro Hernández, Juan Carrascal, and Jose Alfonso Prieto Palomo. 2026. "Comparative DFT Study of Lignocellulosic Binders on N- and S-Monodoped Graphene for Sustainable Li-Ion Battery Electrodes" Journal of Composites Science 10, no. 2: 70. https://doi.org/10.3390/jcs10020070
APA StyleFernández, J. A. H., Carrascal, J., & Palomo, J. A. P. (2026). Comparative DFT Study of Lignocellulosic Binders on N- and S-Monodoped Graphene for Sustainable Li-Ion Battery Electrodes. Journal of Composites Science, 10(2), 70. https://doi.org/10.3390/jcs10020070

