Interface, Mechanical and Thermal Properties of In Situ Generated V(C,N) Solid Solution Reinforced SiC–AlN–VC Multiphase Ceramics
Abstract
1. Introduction
2. Experimental Procedures
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. Phase Composition
3.2. Microstructure
3.2.1. SEM
3.2.2. TEM
3.3. Mechanical Properties
| Material | Sintering Method | Density (%) | Vickers’ Hardness (GPa) | Fracture Toughness (MPa·m1/2) | Reference |
|---|---|---|---|---|---|
| SiC-10 vol.%AlN-10 vol.%VC | SPS | 99.8 | 28.7 | 5.25 | This work |
| SiC-5 wt.%TiC- 10 wt.%Al2O3/Y2O3 | PS | 97.4 | 26.7 | 5.8 | [21] |
| SiC-10 wt.%TiC- 10 wt.%Al2O3/Y2O3 | PS | 92.4 | 24.5 | 4.7 | [21] |
| SiC-10 wt.%TaC | SPS | 99.7 | 25.7 | 3.5 | [23] |
| SiC | PS + Hot Isostatic Pressing(HIP) | ~95% | 29.8 | 3.6 | [12] |
| SiC-5 mol%AlN | PS + HIP | ~100% | 31.9 | 4.1 | [28] |
| 55 wt.%SiC-45 wt.%AlN | SPS | 96.6 | 20.4 | 4.8 | [18] |
3.4. Tribological Properties
3.5. Thermal Properties
| Material | Sintering Conditions | Thermal Conductivity (W/(m·K)) | Reference |
|---|---|---|---|
| SiC + 10 vol.%AlN + 10 vol.%VC | SPS: 1900 °C/2000 °C/2100 °C/40 MPa | 51.2/58/54 | This work |
| SiC + 10 wt.%AlN + B4C/C | PS: 2170 °C/30 min Anneal: 1950 °C/1 h | 35 | [48] |
| SiC + 47.5 mol%AlN + 5mol%Y2O3 | PS: 2000 °C/8 h/Ar PS: 2000 °C/8 h/N2 | 24.5 28.6 | [47] |
| SiC + 2 wt.%AlN SiC + 10 wt.%AlN SiC + 35 wt.%AlN | HP: 1950 °C/2 h/ 40 MPa/Ar | 104.1 49.8 35.1 | [45] |
| SiC + 10 wt.%AlN + 2.5 wt% Y2O3/Al2O3 | PS: 2353 K/2 h | 27.5 | [14] |
| 0.5/2/5 μmSiC + AlN + Y2O3 | PS:2000 °C/N2 | 37.6/45.5/30 | [46] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Zhou, X.; Zou, S.; Chen, L.; Tatarko, P.; Dai, J.; Huang, Z.; Huang, Q. Low-Temperature Pr3Si2C2-Assisted Liquid-Phase Sintering of SiC with Improved Thermal Conductivity. J. Am. Ceram. Soc. 2022, 105, 5576–5584. [Google Scholar] [CrossRef]
- Malik, R.; Kim, Y. Effect of AlN Addition on the Electrical Resistivity of Pressureless Sintered SiC Ceramics with B4C and C. J. Am. Ceram. Soc. 2021, 104, 6086–6091. [Google Scholar] [CrossRef]
- He, R.; Zhou, N.; Zhang, K.; Zhang, X.; Zhang, L.; Wang, W.; Fang, D. Progress and Challenges towards Additive Manufacturing of SiC Ceramic. J. Adv. Ceram. 2021, 10, 637–674. [Google Scholar] [CrossRef]
- Huczko, A.; Dąbrowska, A.; Savchyn, V.; Popov, A.I.; Karbovnyk, I. Silicon Carbide Nanowires: Synthesis and Cathodoluminescence. Phys. Status Solidi B 2009, 246, 2806–2808. [Google Scholar] [CrossRef]
- Tynyshbayeva, K.M.; Kozlovskiy, A.L. The Effect of Temperature Factor During Heavy Ion Irradiation on Structural Disordering of SiC Ceramics. Opt. Mater. X 2025, 25, 100383. [Google Scholar] [CrossRef]
- Lebedev, A.S.; Suzdal’tsev, A.V.; Anfilogov, V.N.; Farlenkov, A.S.; Porotnikova, N.M.; Vovkotrub, E.G.; Akashev, L.A. Carbothermal Synthesis, Properties, and Structure of Ultrafine SiC Fibers. J. Inorg. Mater. 2020, 56, 20–27. [Google Scholar] [CrossRef]
- Cheng, Z.; Koh, Y.R.; Mamun, A.; Shi, J.; Bai, T.; Huynh, K.; Yates, L.; Liu, Z.; Li, R.; Lee, E.; et al. Experimental Observation of High intrinsic Thermal Conductivity of AlN. Phys. Rev. Mater. 2020, 4, 044602. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Z.; Harris, J.; Diao, X.; Liu, G. High thermal conductive AlN substrate for heat dissipation in high-power LEDs. Ceram. Int. 2019, 45, 1412–1415. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, H.; Alderman, B.; Huggard, P.; Zhang, B.; Fan, Y. 190 GHz High Power Input Frequency Doubler Based on Schottky Diodes and AlN Substrate. IEICE Electron. Expr. 2016, 13, 20160981. [Google Scholar] [CrossRef]
- Sun, X.; Chen, X.; Jin, X.; Kan, Y.; Hu, J.; Dong, S. Fabrication and Properties of AlN-SiC Multiphase Ceramics via Low Temperature Reactive Melt Infiltration. J. Inorg. Mater. 2023, 38, 1223–1229. [Google Scholar] [CrossRef]
- Ma, C.; Li, Y.; Wu, X.; Gao, Y. Synthesis Mechanism of AlN–SiCSolid Solution Reinforced Al2O3 Composite by Two-step Nitriding of Al–Si3N4–Al2O3 Compact at 1500 °C. Ceram. Int. 2023, 49, 22022–22029. [Google Scholar] [CrossRef]
- Li, J.; Watanabe, R. Preparation and Mechanical Properties of SiC-AlN Ceramic Alloy. J. Mater. Sci. 1991, 26, 4813–4817. [Google Scholar] [CrossRef]
- Liu, C.; Guo, W.; Sun, S.; Zou, J.; Wu, S.; Lin, H. Texture, Microstructures, and Mechanical Properties of AlN-based Ceramics with Si3N4–Y2O3 Additives. J. Am. Ceram. Soc. 2017, 100, 3380–3384. [Google Scholar] [CrossRef]
- Besisa, D.; Ewais, E.; Shalaby, E.; Usenko, A.; Kuznetsov, D.V. Thermoelectric Properties and Thermal Stress Simulation of Pressureless Sintered SiC/AlN Ceramic Composites at High Temperatures. Sol. Energy Mater. Sol. Cells 2018, 182, 302–313. [Google Scholar] [CrossRef]
- Li, G.; Li, B.; Ren, B.; Li, Y.; Chen, H.; Chen, J. High-ThermalConductivity AlN Ceramics Prepared from Octyltrichlorosilane-Modified AlN Powder. Processes 2023, 11, 1186. [Google Scholar]
- Sun, S.; Yuan, J.; Guo, W.; Duan, X.; Jia, D.; Lin, H. Thickness Effects on the Sinterability, Microstructure, and Nanohardness of SiC-based Ceramics Consolidated by Spark Plasma Sintering. J. Am. Ceram. Soc. 2024, 107, 777–784. [Google Scholar] [CrossRef]
- Kim, Y.; Mitomo, M.; Nishimura, T. High-Temperature Strength of Liquid-Phase-Sintered SiC with AlN and Re2O3 (RE = Y, Yb). J. Am. Ceram. Soc. 2002, 85, 1007–1009. [Google Scholar] [CrossRef]
- Das, J.; Patel, P.; Reddy, J.; Prasad, V.V. Microstructure and Mechanical Properties of a SiC Containing Advanced Structural Ceramics. Int. J. Refract. Met. Hard Mater. 2019, 84, 105030. [Google Scholar] [CrossRef]
- Yu, C.; Deng, C.; Ding, J.; Zhu, H.; Liu, H.; Dong, B.; Xing, G.; Zhu, Q.; Zheng, Y. Enhanced mechanical properties of R–SiC honeycomb ceramics with in situ AlN–SiC solid solution. Ceram. Int. 2023, 49, 32153–32163. [Google Scholar] [CrossRef]
- Jiang, L.; Shi, P.; Zhang, C.H.; Wu, M. First-Principles Study on Interfacial Structure and Strength of SiC/VC Nano-Layered Hard Coatings. Comput. Mater. Sci. 2023, 230, 112532. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.; You, X.; Li, Q.; Wang, M.; Zhang, X.; Kan, Y.; Xue, Y.; Dong, S. Synergistic Effects of Al2O3 and Y2O3 on Enhancing the Wet-Oxidation Resistance of SiC Ceramics. Corros. Sci. 2025, 249, 112848. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, G.; Sun, S.; Liu, H.; Kan, Y.; Liu, J.; Xu, C. ZrO2 Removing Reactions of Groups IV–VI Transition Metal Carbides in ZrB2 Based Composites. J. Eur. Ceram. Soc. 2011, 31, 421–427. [Google Scholar] [CrossRef]
- Sharma, S.; Chaudhary, K.; Gupta, Y.; Kalin, M.; Kumar, B. Erosive Wear Behavior of Spark Plasma-Sintered SiC-TaC Composites. Int. J. Appl. Ceram. Technol. 2022, 19, 1691–1701. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, B.; Liu, X.; Chen, Z.; Huang, Z.; Yin, J. β→α Phase Transformation and Properties of Solid-State-Sintered SiC Ceramics with TaC Addition. Materials 2023, 16, 3787. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Oh, S.; Ju, J. Effect of Transition Metal on Properties of SiC Electroconductive Ceramic Composites. J. Electrochem. Soc. 2004, 53, 352–357. [Google Scholar]
- Khodaei, M.; Yaghobizadeh, O.; Safavi, S.; Ehsani, N.; Baharvandi, H.R.; Esmaeeli, S. The Effect of TiC Additive with Al2O3-Y2O3 on the Microstructure and Mechanical Properties of SiC Matrix Composites. Adv. Ceram. Prog. 2020, 6, 15–24. [Google Scholar]
- Guo, S. Effects of VC Additives on Densification and Elastic and Mechanical Properties of Hot-Pressed ZrB2-SiC Composites. J. Mater. Sci. 2018, 53, 4010–4021. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, G.; Kan, Y.; Wang, P. Hot-Pressed ZrB2-SiC Ceramics with VC Additives, Chemical Reaction, Microstructures, and Mechanical Properties. J. Am. Ceram. Soc. 2009, 92, 2838–2846. [Google Scholar] [CrossRef]
- Anstis, G.; Chantikul, P.; Lawn, B.; Marshall, D. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness, I, Direct Crack Measurements. J. Am. Ceram. Soc. 1981, 64, 533–538. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, A.; Han, J.; Meng, J. Microstructure, Mechanical and Tribological Properties of CoCrFeNiMn High Entropy Alloy Matrix Composites with Addition of Cr3C2. Tribol. Int. 2020, 151, 106436. [Google Scholar] [CrossRef]
- Yuan, B. Research on Preparation Process and Properties of Gelcasting SiC-AlN Multiphase Ceramics; Harbin Inst. Technol: Harbin, China, 2011. [Google Scholar]
- Gong, M.; Zhang, H.; Hai, W. High Strength of SiC–AlN–TiB2–VC Multiphase Ceramics Induced by Interface Reactions. Ceram. Int. 2024, 8, 339. [Google Scholar] [CrossRef]
- Noviyanto, A.; Min, B.; Yu, H.; Yoon, D. Highly Dense and Fine-Grained SiC with a Sc-Nitrate Sintering Additive. J. Eur. Ceram. Soc. 2014, 34, 825–830. [Google Scholar] [CrossRef]
- Ortiz, A.; Borrero-López, O.; Quadir, M.; Guiberteau, F. A Route for the Pressureless Liquid Phase Sintering of SiC with Low Additive Content for Improved Sliding-Wear Resistance. J. Eur. Ceram. Soc. 2012, 32, 965–973. [Google Scholar] [CrossRef]
- Liang, H.; Yao, X.; Huang, Z.; Zeng, Y. In Situ Analysis of the Liquid Phase Sintering Process of α-SiCCeramics. J. Inorg. Mater. 2016, 31, 443–448. [Google Scholar]
- Zhou, Z.; Chen, X.; Yuan, Y.; Shi, L. A Comparison of the Thermal Decomposition Mechanism of Wurtzite AlN and Zinc Blende AlN. J. Mater. Sci. 2018, 53, 11216–11227. [Google Scholar] [CrossRef]
- Kwon, H.; Moon, A.; Kim, W.; Kim, J. Investigation of the Conditions Required for theFormation of V(C,N) During Carburization of Vanadium or Carbothermal Reduction of V2O5 under Nitrogen. Ceram. Int. 2018, 44, 2847–2855. [Google Scholar] [CrossRef]
- Pompe, R. Some Thermochemical Properties of the System Vanadium-Nitrogen and Vanadium-Carbon-Nitrogen in the Temperature Range 1000–1550 °C. Thermochim. Acta. 1982, 57, 273–281. [Google Scholar] [CrossRef]
- Khodaei, M.; Yaghobizadeh, O.; Baharvandi, H.; Dashti, A. Effects of Different Sintering Methods on the Properties of SiC, TiC, SiC–TiB2 Composites. Int. J. Refract. Met. H. 2018, 70, 19–31. [Google Scholar] [CrossRef]
- Dehghani, H.; Khodaei, M.; Yaghobizadeh, O.; Ehsani, N.; Baharvandi, H.R.; Alhosseini, S.H.N.; Javi, H. The effect of AlN-Y2O3 compound on properties of pressureless sintered SiC ceramics-A review. Int. J. Refract. Met. H. 2021, 95, 105420. [Google Scholar] [CrossRef]
- Arab, S.; Asl, M.; Kakroudi, M.; Salahimehr, B.; Mahmoodipour, K. On the Oxidation Behavior of ZrB2–SiC–VC Composites. Int. J. Appl. Ceram. Tec. 2021, 18, 2306–2313. [Google Scholar] [CrossRef]
- Llorente, J.; Román-Manso, B.; Miranzo, P.; Belmonte, M. Tribological Performance Under Dry Sliding Conditions of Graphene/Silicon Carbide Composites. J. Eur. Ceram. Soc. 2016, 36, 429–435. [Google Scholar] [CrossRef]
- Pant, H.; Debnath, D.; Chakraborty, S.; Wani, M.; Das, P. Mechanical and Tribological Properties of Spark Plasma Sintered SiC-TiB2 and SiC–TiB2–TaC Composites, Effects of Sintering Temperatures (2000 degrees C and 2100 degrees C). J. Tribol. 2018, 140, 0742–4787. [Google Scholar] [CrossRef]
- Chodisetti, S.; Kumar, B. Tailoring Friction and Wear Properties of Titanium Boride Reinforced Silicon Carbide Composites. Wear 2023, 526–527, 204886. [Google Scholar] [CrossRef]
- Kim, K.; Kim, Y.; Lim, K.; Nishimura, T.; Narimatsu, E. Electrical and Thermal Properties of SiC–AlN Ceramics without Sintering Additives. J. Eur. Ceram. Soc. 2015, 35, 2715–2721. [Google Scholar] [CrossRef]
- Lu, Y.P.; Zang, X.R.; Du, B. Investigation of the Effect of the SiC Particle Size on the Properties of the AlN–SiC Composite Ceramic. Mater. Chem. Phys. 2021, 261, 124222. [Google Scholar] [CrossRef]
- Kultayeva, S.; Kim, Y. Mechanical, Thermal, and Electrical Properties of Pressureless Sintered SiC–AlN Ceramics. Ceram. Int. 2020, 46, 19264–19273. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, X.; Li, Y.; Lian, H.; Chen, J.; Zhang, J.; Yang, J.; Li, X.; Qiu, T.; Chen, Z.; et al. Effect of AlN Addition on the Thermal Conductivity of Pressureless Sintered SiC Ceramics. Ceram. Int. 2015, 41, 13547–13552. [Google Scholar] [CrossRef]









| Sample | SiC (PDF#29-11131) | VC (PDF#65-8818) | ||
|---|---|---|---|---|
| a/nm | b/nm | c/nm | a/nm | |
| 3.073 | 3.073 | 15.080 | 4.173 | |
| SAV18 | 3.076 | 3.076 | 15.083 | 4.166 |
| SAV20 | 3.074 | 3.074 | 15.865 | 4.168 |
| SAV21 | 3.080 | 3.080 | 15.094 | 4.170 |
| Sample | Vickers’ Hardness (GPa) | Bending Strength (MPa) | Fracture Toughness (MPa·m1/2) |
|---|---|---|---|
| SAV19 | 25.5 ± 0.5 | 501 ± 62 | 5.12 ± 0.1 |
| SAV20 | 28.7 ± 0.8 | 508 ± 58 | 5.25 ± 0.7 |
| SAV21 | 26.6 ± 3.3 | 302 ± 72 | 4.88 ± 0.6 |
| Sample | Average Specific WR (mm3/(N·m)) | Average CoF |
|---|---|---|
| SAV19 | 2.78 × 10−5 | 0.51 |
| SAV20 | 3.41 × 10−5 | 0.41 |
| SAV21 | 3.90 × 10−5 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, L.; Gong, M.; Zhang, H.; Hai, W. Interface, Mechanical and Thermal Properties of In Situ Generated V(C,N) Solid Solution Reinforced SiC–AlN–VC Multiphase Ceramics. J. Compos. Sci. 2026, 10, 29. https://doi.org/10.3390/jcs10010029
Li L, Gong M, Zhang H, Hai W. Interface, Mechanical and Thermal Properties of In Situ Generated V(C,N) Solid Solution Reinforced SiC–AlN–VC Multiphase Ceramics. Journal of Composites Science. 2026; 10(1):29. https://doi.org/10.3390/jcs10010029
Chicago/Turabian StyleLi, Liulin, Maoyuan Gong, Hai Zhang, and Wanxiu Hai. 2026. "Interface, Mechanical and Thermal Properties of In Situ Generated V(C,N) Solid Solution Reinforced SiC–AlN–VC Multiphase Ceramics" Journal of Composites Science 10, no. 1: 29. https://doi.org/10.3390/jcs10010029
APA StyleLi, L., Gong, M., Zhang, H., & Hai, W. (2026). Interface, Mechanical and Thermal Properties of In Situ Generated V(C,N) Solid Solution Reinforced SiC–AlN–VC Multiphase Ceramics. Journal of Composites Science, 10(1), 29. https://doi.org/10.3390/jcs10010029

