Effect of Roller Angle on Formability in Rotary Forming of Spiral Corrugated Tubes
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Method and Conditions of Experiments and FEA
Roller | Roller diameter DR [mm] | 50 |
Tip radius R [mm] | 2.3 | |
Roller angle β [°] | 32, 36, 40 | |
Indentation HI [mm] | 2.4 | |
Rotational speed n [rpm] | 130, 150, 170, 190, and 210 | |
Distance of moving LD [mm] | 500, 123 (FEA) | |
Speed of moving v [mm/s] | 166.7 | |
Tube | Initial diameter D0 [mm] | 19.05 |
Initial thickness t0 [mm] | 1.2 | |
Initial length L0 [mm] | 900, 150 (FEA) | |
Material | AA3003 H12 | |
Element size (FEA) | 1 mm/div along axial, 4 elements in thickness, and 60 elements in circumferential directions | |
Lubrication | None | |
Friction coefficient μ | 0.05 [23] |
2.3. Evaluation of Formed Tube
3. Deformation Mechanism and Tube Deformation at Different Roller Angles
3.1. Deformation Mechanism in Cross-Section
3.2. Forming Load and Contact State
3.3. Deformation of Tube at Different Roller Angles
4. Geometrical Precision and Circumferential Thickness Distribution
4.1. Geometrical Precision of Formed Tubes
4.2. Circumferential Thickness Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, C.; Shao, M.; Zhang, W.; Huang, M.; Wang, G. Enhancing heat transfer efficiency in corrugated tube heat exchangers: A comprehensive approach through structural optimization and field synergy analysis. Heliyon 2024, 10, e30113. [Google Scholar] [CrossRef] [PubMed]
- Kareem, Z.; Abdullah, S.; Lazim, T.; Jaafar, M.; Wahid, A. Heat transfer enhancement in three-start spirally corrugated tube: Experimental and numerical study. Chem. Eng. Sci. 2015, 134, 746–757. [Google Scholar] [CrossRef]
- Liao, W.; Lian, S. Effect of compound corrugation on heat transfer performance of corrugated tube. Int. J. Therm. Sci. 2023, 185, 108036. [Google Scholar] [CrossRef]
- Pan, C.; Dai, Y. Flow and heat transfer mechanism and optimization design of spirally corrugated tubes. J. Therm. Sci. Eng. Appl. 2024, 16, 101001. [Google Scholar] [CrossRef]
- Safari, M.; Joudaki, J.; Ghadiri, Y. A comprehensive study of the hydroforming process of metallic bellows: Investigation and multi-objective optimization of the process parameters. Int. J. Eng. B 2019, 32, 1681–1688. [Google Scholar] [CrossRef]
- Jiang, L.; He, Y.; Lin, Y.; Zhang, S.; Feng, Y.; Sun, M.; Guo, X. Influence of process parameters on thinning ratio and fittability of bellows hydroforming. Int. J. Adv. Manuf. Technol. 2020, 107, 3371–3387. [Google Scholar] [CrossRef]
- Yuan, Z.; Huo, S.; Ren, J.; Han, J. Study on the hydroforming technology of reinforced s-shaped bellows. Int. J. Adv. Manuf. Technol. 2019, 103, 2541–2552. [Google Scholar] [CrossRef]
- Shi, C.; Li, J.; Zhu, X. Liquid filling and external extrusion composite forming tiny size spiral tube with equal wall thickness. Int. J. Adv. Manuf. Technol. 2021, 115, 3177–3195. [Google Scholar] [CrossRef]
- Shi, C.; Li, J.; Deng, J.; Zhu, X. External high-pressure forming of metal spiral tube of equal wall thickness. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 536–547. [Google Scholar] [CrossRef]
- Zhu, X.; Shi, C.; Tong, H. Optimizing loading path and die linetype of large length-to-diameter ratio metal stator screw lining hydroforming. J. Cent. South Univ. 2015, 22, 224–231. [Google Scholar] [CrossRef]
- Jin, J.; Qi, Z.; Wang, X.; Deng, L. An incremental die forging process for producing helical tubes. Int. J. Adv. Manuf. Technol. 2016, 85, 99–114. [Google Scholar] [CrossRef]
- Grzancic, G.; Löbbe, C.; Khalifa, N.B.; Tekkaya, A.E. Analytical prediction of wall thickness reduction and forming forces during the radial indentation process in Incremental Profile Forming. J. Mater. Process. Technol. 2019, 267, 68–79. [Google Scholar] [CrossRef]
- Kuss, M.; Buchmayr, B. Analytical, numerical and experimental investigations of a ball spinning expansion process. J. Mater. Process. Technol. 2015, 224, 213–221. [Google Scholar] [CrossRef]
- Hirama, S.; Ikeda, T.; Gondo, S.; Kajikawa, S.; Kuboki, T. Ball spin forming for flexible and partial diameter reduction in tubes. Metals 2020, 10, 1627. [Google Scholar] [CrossRef]
- Ou, X.; Zhu, X.; Gu, P.; Wang, B.; Liu, J.; Yang, S. Analysis and investigation of trilateral spinning based on the concentric circle trajectory. Metals 2022, 12, 647. [Google Scholar] [CrossRef]
- Zhu, X.; Ji, W. Finite element analysis and experimental study on roll-forming method in iso-wall thickness stator bushing of screw drilling. Int. J. Adv. Manuf. Technol. 2017, 93, 1939–1952. [Google Scholar] [CrossRef]
- Shi, C.; Li, J.; Deng, J.; Zhu, X.; Jia, Y. Study on multi-roller rotary feed forming mechanism of spiral tube with uniform wall thickness. Int. J. Adv. Manuf. Technol. 2020, 106, 4593–4610. [Google Scholar] [CrossRef]
- Ma, C.; Li, T.; Xue, C.; Jin, R.; Chu, Z.; Shuai, M.; Tuo, L. Optimization of Roll Configuration and Investigation of Forming Process in Three-Roll Planetary Rolling of Stainless Steel Seamless Tubes. Metals 2025, 15, 540. [Google Scholar] [CrossRef]
- Chen, W.-J.; Zhou, Y.-Y.; Liu, H.-M. Cold Roll Forming Simulation and Orthogonal Experimental Optimization of Spiral Corrugated Steel Tubes. Mater. Tehnol. 2024, 58, 597–607. [Google Scholar] [CrossRef]
- JIS Z 2241; Metallic materials–Tensile testing–Method of test at room temperature. Japanese Standards Association (JSA): Tokyo, Japan, 2022.
- Yoshida, K.; Ishii, A.; Tadano, Y. Work-hardening behavior of polycrystalline aluminum alloy under multiaxial stress paths. Int. J. Plast. 2014, 53, 17–39. [Google Scholar] [CrossRef]
- Popov, V.L. Coulomb’s Law of Friction. In Contact Mechanics and Friction; Springer: Berlin/Heidelberg, Germany, 2010; pp. 133–154. [Google Scholar] [CrossRef]
- Zhao, X.; Mu, Z.; Zhao, H.; Wang, P.; Song, W.; Yang, G. Influence of inner roller geometric parameters on counter-roller spinning with 6061 aluminum alloy tube. Metals 2023, 13, 1720. [Google Scholar] [CrossRef]
- Ren, X.; Fan, Z.; Jia, Z.; Shen, Y.; You, H. Numerical Simulation Study on Non-Axisymmetric Die-Less Spinning with a Right-Angle Groove in the Tube. Materials 2025, 18, 3858. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, S.; Lu, Q.; Shu, X.; Zhang, J.; Shen, W. Effect of Process Parameters on Spinning Force and Forming Quality of Deep Cylinder Parts in Multi-Pass Spinning Process. Metals 2023, 13, 620. [Google Scholar] [CrossRef]
- Gondo, S.; Arai, H. Effect and Control of Path Parameters on Thickness Distribution of Cylindrical Cups Formed via Multi-Pass Conventional Spinning. J. Intell. Manuf. 2022, 33, 617–635. [Google Scholar] [CrossRef]
β = 32° | β = 36° | β = 40° | ||
---|---|---|---|---|
130 rpm | ||||
150 rpm | ||||
170 rpm | ||||
190 rpm | ||||
210 rpm |
130 rpm | 150 rpm | 170 rpm | 190 rpm | 210 rpm | |
---|---|---|---|---|---|
β = 32° | |||||
β = 36° | |||||
β = 40° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Eda, H.; Okabe, K.; Mizuta, Y. Effect of Roller Angle on Formability in Rotary Forming of Spiral Corrugated Tubes. J. Manuf. Mater. Process. 2025, 9, 337. https://doi.org/10.3390/jmmp9100337
Zhang S, Eda H, Okabe K, Mizuta Y. Effect of Roller Angle on Formability in Rotary Forming of Spiral Corrugated Tubes. Journal of Manufacturing and Materials Processing. 2025; 9(10):337. https://doi.org/10.3390/jmmp9100337
Chicago/Turabian StyleZhang, Shiliang, Hikaru Eda, Kazuyori Okabe, and Yoshihiko Mizuta. 2025. "Effect of Roller Angle on Formability in Rotary Forming of Spiral Corrugated Tubes" Journal of Manufacturing and Materials Processing 9, no. 10: 337. https://doi.org/10.3390/jmmp9100337
APA StyleZhang, S., Eda, H., Okabe, K., & Mizuta, Y. (2025). Effect of Roller Angle on Formability in Rotary Forming of Spiral Corrugated Tubes. Journal of Manufacturing and Materials Processing, 9(10), 337. https://doi.org/10.3390/jmmp9100337