Permeability of Additive Manufactured Cellular Structures—A Parametric Study on 17-4 PH Steels, Inconel 718, and Ti-6Al-4V Alloys
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Material and SLM Parameters
2.2. Porosity and Gas Permeability Measurement
3. Result and Discussion
3.1. Porosity of SLM Cellular Parts
3.2. Air Permeability
4. Conclusions
- (1)
- SLM was employed to prepare 17-4 PH, Ti-6Al-4V ELI, and Inconel 718 cellular parts by adjusting hatch distance from 300 to 1000 μm. The relationship between energy density and porosity levels is expressed using power law. The Eo coefficients are 1.07 × 105, 9.09 × 104, and 7.14 × 104 J/mm3, respectively, for the three alloys;
- (2)
- 17-4 PH powders require higher energy to attain liquid states which are also more viscous and have higher vapor pressure. Therefore, 17-4 PH demonstrated the highest Eo and porosity level at the same energy density. In contrast, Inconel 718 requires lower enthalpy to melt, and the lowest porosity is obtained at the same energy density input;
- (3)
- Gas permeability relates not only to porosity level but also to the size and tortuosity of pore pathways in cellular parts. As Inconel 718 cellular parts contain more through-pores, a lower surface area gave rise to the highest permeability at a similar porosity. Pore pathways in Ti-6Al-4V were characterized by higher tortuosity with the highest specific surface area indicating many powders are partially adhered to the surface along the gas pathways. The lowest permeability was attained by 17-4 PH at a similar level of porosity among the three alloys investigated due to the reduced pore sizes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atwater, M.A.; Guevara, L.N.; Darling, K.A.; Tschopp, M.A. Solid State Porous Metal Production: A Review of the Capabilities, Characteristics, and Challenges. Adv. Eng. Mater. 2018, 20, 1700766. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhang, L.; Lin, J.; Liang, Y.; He, Y.; Shang, S.; Liu, Z.-K. Pore structure and gas permeability of high Nb-containing TiAl porous alloys by elemental powder metallurgy for microfiltration application. Intermetallics 2013, 33, 2–7. [Google Scholar] [CrossRef]
- Matassi, F.; Botti, A.; Sirleo, L.; Carulli, C.; Innocenti, M. Porous metal for orthopedics implants. Clin. Cases Miner. Bone Metab. 2013, 10, 111. [Google Scholar] [PubMed]
- Azizi, A.; Sammakia, B.G.; Daeumer, M.A.; Murray, B.T.; Simmons, J.C.; Schiffres, S.N. Additive laser metal deposition onto silicon for enhanced microelectronics cooling. In Proceedings of the IEEE 69th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 28–31 May 2019. [Google Scholar]
- Li, Y.; Li, Z.; Zhou, W.; Zeng, Z.; Yan, Y.; Li, B. Experimental investigation of vapor chambers with different wick structures at various parameters. Exp. Therm. Fluid Sci. 2016, 77, 132–143. [Google Scholar] [CrossRef]
- Khavekar, R.; Vasudevan, H.; Ranka, D. Investigating red X parameter for short shot-type defect in plastic injection moulds using Shainin’s design of experiments. In Proceedings of the International Conference on Intelligent Manufacturing and Automation, Wuhan, China, 16–18 October 2020; pp. 533–541. [Google Scholar]
- Lee, H.; Ryu, K. Dual-Kernel-Based Aggregated Residual Network for Surface Defect Inspection in Injection Molding Processes. Appl. Sci. 2020, 10, 8171. [Google Scholar] [CrossRef]
- Suda, T.; Kuroiwa, H.; Fukushima, Y.; Suzuki, T.; Terauchi, F. Detection of the burn mark on the plastic surface using image analysis: Fundamental study for reduction the environmental impact by unpainted plastic products. In Proceedings of the International Conference on Leading Edge Manufacturing in 21st Century, Miyagi, Japan, 7–8 November 2013; pp. 444–447. [Google Scholar]
- Crema, L.; Sorgato, M.; Lucchetta, G. Thermal optimization of deterministic porous mold inserts for rapid heat cycle molding. Int. J. Heat Mass Transf. 2017, 109, 462–469. [Google Scholar] [CrossRef]
- Narahara, H.; Takeshita, S.; Fukumaru, H.; Koresawa, H.; Suzuki, H. Permeability performance on porous structure of injection mold fabricated by metal laser sintering combined with high speed milling. Int. J. Auto. Techn. 2012, 6, 576–583. [Google Scholar] [CrossRef]
- Kulshreshtha, A.; Dhakad, S. Preparation of metal foam by different methods: A review. Mater. Today Proc. 2020, 26, 1784–1790. [Google Scholar] [CrossRef]
- Zaman, E.; Keleş, O. Open Cell Aluminum Foams Produced by Polymer Impregnation Method. Acta Phys. Pol. A 2014, 125, 445–448. [Google Scholar] [CrossRef]
- Kojima, M.; Narahara, H.; Nakao, Y.; Fukumaru, H.; Koresawa, H.; Suzuki, H.; Abe, S. Permeability characteristics and applications of plastic injection molding fabricated by metal laser sintering combined with high speed milling. Int. J. Auto. Techn. 2008, 2, 175–181. [Google Scholar] [CrossRef]
- Dhinakar, A.; Li, B.-E.; Chang, Y.-C.; Chiu, K.-C.; Chen, J.-K. Air Permeability of Maraging Steel Cellular Parts Made by Selective Laser Melting. Materials 2021, 14, 3118. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of selective laser melting: Materials and applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar] [CrossRef]
- Bremen, S.; Meiners, W.; Diatlov, A. Selective laser melting: A manufacturing technology for the future? Laser Tech. J. 2012, 9, 33–38. [Google Scholar] [CrossRef]
- Murr, L.E.; Martinez, E.; Hernandez, J.; Collins, S.; Amato, K.N.; Gaytan, S.M.; Shindo, P.W. Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting. J. Mater. Res. Technol. 2012, 1, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Yadollahi, A.; Shamsaei, N.; Thompson, S.M.; Elwany, A.; Bian, L. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. Int. J. Fatigue 2017, 94, 218–235. [Google Scholar] [CrossRef]
- Singla, A.K.; Banerjee, M.; Sharma, A.; Singh, J.; Bansal, A.; Gupta, M.K.; Khanna, N.; Shahi, A.; Goyal, D.K. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments. J. Manuf. Process. 2021, 64, 161–187. [Google Scholar] [CrossRef]
- Olakanmi, E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: Effect of processing conditions and powder properties. J. Mater. Proc. Tech. 2013, 213, 1387–1405. [Google Scholar] [CrossRef]
- Furumoto, T.; Koizumi, A.; Alkahari, M.R.; Anayama, R.; Hosokawa, A.; Tanaka, R.; Ueda, T. Permeability and strength of a porous metal structure fabricated by additive manufacturing. J. Mater. Process. Technol. 2015, 219, 10–16. [Google Scholar] [CrossRef]
- Heaney, D.F.; German, R.M. Porous stainless steel parts using selective laser sintering. Adv. Powder Metall. Partic. Mater. 2001, 8, 8–73. [Google Scholar]
- Yan, M.; Tian, X.; Peng, G.; Cao, Y.; Li, D. Hierarchically porous materials prepared by selective laser sintering. Mater. Des. 2017, 135, 62–68. [Google Scholar] [CrossRef]
- Leong, K.; Jin, L. Characteristics of oscillating flow through a channel filled with open-cell metal foam. Int. J. Heat Fluid Flow 2006, 27, 144–153. [Google Scholar] [CrossRef]
- Dukhan, N.; Patel, P. Equivalent particle diameter and length scale for pressure drop in porous metals. Exp. Therm. Fluid Sci. 2008, 32, 1059–1067. [Google Scholar] [CrossRef]
- Chan, Y.L.S.; Diegel, O.; Xu, X. Bonding integrity of hybrid 18Ni300-17-4 PH steel using the laser powder bed fusion process for the fabrication of plastic injection mould inserts. J. Adv. Manuf. Tech. 2022, 120, 4963–4976. [Google Scholar] [CrossRef]
- Ealy, B.; Calderon, L.; Wang, W.; Valetin, R.; Mingareev, I.; Richardson, M.; Kapat, J. Characterization of laser additive manufacturing fabricated porous superalloys for turbine components. J. Eng. Gas Turb. Power 2017, 139, 102102. [Google Scholar] [CrossRef]
- Simmons, C.T. Henry Darcy (1803–1858): Immortalised by his scientific legacy. Appl. Hydrogeol. 2008, 16, 1023–1038. [Google Scholar] [CrossRef]
- Valencia, J.J.; Quested, P.N. Thermophysical Properties; ASM Handbook, Casting; ASM International: Ohio, OH, USA, 2013; Volume 15, pp. 468–481. [Google Scholar]
- Battezzati, L.; Greer, A. The viscosity of liquid metals and alloys. Acta Met. 1989, 37, 1791–1802. [Google Scholar] [CrossRef]
- Vora, A. Electrical transport properties of some liquid metals. Phys. Chem. Liq. 2008, 46, 800–810. [Google Scholar]
- Stoffregen, H.A.; Fischer, J.; Siedelhofer, C.; Abele1, E. Selective laser melting of porous structures. In Proceedings of the 22nd Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 8–10 August 2011; pp. 680–695. [Google Scholar]
Fe | Cr | Ni | Cu | Si | Mn | Nb | Mo | Ti | Al | V | D50 (μm) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
17-4 PH | balance | 16.45 | 3.92 | 7.68 | 0.18 | 0.40 | 0.29 | - | - | - | - | 36.3 |
Inconel 718 | 17.87 | 20.04 | balance | - | - | - | 5.41 | 3.02 | 1.00 | 0.06 | - | 30.7 |
Ti-6Al-4V ELI | - | - | - | - | - | - | - | - | balance | 5.95 | 3.78 | 41.2 |
Material | No. | Laser Power P (W) | Scanning Speed (mm/s) | Hatch Distance h (μm) | Layer Thickness t (μm) |
---|---|---|---|---|---|
17-4 PH | P1~P15 | 220 | 755.5 | 300~1000 (#1~#15 step by 50) | 40 |
Inconel 718 | I1~I15 | 285 | 960 | 40 | |
Ti-6Al-4V ELI | T1~T15 | 280 | 1200 | 30 |
Material | Molecular Weight (g/mole) | |
---|---|---|
17-4 PH | 7.79 | 55.91 |
Inconel 718 | 8.19 | 58.10 |
Ti-6Al-4V ELI | 4.41 | 46.05 |
Material | ϕo (%) | Eo (J/mole) | Enthalpy Needed from 300 K to Melt, ΔHf (J/mole) |
---|---|---|---|
17-4 PH | 107.93 | 1.07 × 105 | 52,049 |
Ti-6Al-4V ELI | 96.89 | 9.02 × 104 | 54,137 |
Inconel 718 | 104.15 | 7.11 × 104 | 46,948 |
Material | η at Melting Point (mPa·s) [30] | PVap (atm) at Melting Point | K (W/m·K) [31] |
---|---|---|---|
Fe | 5.5 | 3.38 × 10−5 | 82 |
Ni | 4.9 | 4.33 × 10−6 | 66 |
Ti | 2.2 | 3.77 × 10−6 | 95 |
Sample No. | ϕ (%) | k20 psi (m2) | Sample No. | ϕ (%) | k20 psi (m2) | Sample No. | ϕ (%) | k20 psi (m2) |
---|---|---|---|---|---|---|---|---|
P2 | 26.15 | 4.24 × 10−13 | I6 | 26.67 | 1.28 × 10−12 | T10 | 27.64 | 9.14 × 10−13 |
P3 | 30.08 | 6.80 × 10−13 | I7 | 29.45 | 1.41 × 10−12 | T11 | 30.38 | 9.67 × 10−13 |
P5 | 39.17 | 8.41 × 10−13 | I10 | 38.8 | 1.95 × 10−12 | T15 | 40.34 | 1.22 × 10−13 |
Sample No. | d50 (μm) | S (m2/m3) | Sample No. | d50 (μm) | S (m2/m3) | Sample No. | d50 (μm) | S (m2/m3) |
---|---|---|---|---|---|---|---|---|
P2 | 15.28 | 0.11 | I6 | 14.32 | 0.15 | T10 | 28.48 | 0.49 |
P3 | 21.63 | 0.45 | I7 | 15.62 | 0.42 | T11 | 32.83 | 0.85 |
P5 | 45.32 | 1.04 | I10 | 59.03 | 0.90 | T15 | 71.01 | 1.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.-W.; Cheng, T.-L.; Chiu, K.-C.; Chen, J.-K. Permeability of Additive Manufactured Cellular Structures—A Parametric Study on 17-4 PH Steels, Inconel 718, and Ti-6Al-4V Alloys. J. Manuf. Mater. Process. 2022, 6, 114. https://doi.org/10.3390/jmmp6050114
Liu T-W, Cheng T-L, Chiu K-C, Chen J-K. Permeability of Additive Manufactured Cellular Structures—A Parametric Study on 17-4 PH Steels, Inconel 718, and Ti-6Al-4V Alloys. Journal of Manufacturing and Materials Processing. 2022; 6(5):114. https://doi.org/10.3390/jmmp6050114
Chicago/Turabian StyleLiu, Ting-Wei, Tien-Lin Cheng, Kuo-Chi Chiu, and Jhewn-Kuang Chen. 2022. "Permeability of Additive Manufactured Cellular Structures—A Parametric Study on 17-4 PH Steels, Inconel 718, and Ti-6Al-4V Alloys" Journal of Manufacturing and Materials Processing 6, no. 5: 114. https://doi.org/10.3390/jmmp6050114
APA StyleLiu, T. -W., Cheng, T. -L., Chiu, K. -C., & Chen, J. -K. (2022). Permeability of Additive Manufactured Cellular Structures—A Parametric Study on 17-4 PH Steels, Inconel 718, and Ti-6Al-4V Alloys. Journal of Manufacturing and Materials Processing, 6(5), 114. https://doi.org/10.3390/jmmp6050114