High-Temperature Diffusion Bonding of Ti–6Al–4V and Super-Duplex Stainless Steel Using a Cu Interlayer Embedded with Alumina Nanoparticles
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Sample Preparation and Bonding Process
3. Results and Discussion
3.1. Effect of Bonding Time on the Bond Interface
3.2. Effect of Bonding Temperature on the Interface
3.3. Effect of Interlayer Composition on the Bond Interface
3.4. Hardness
3.5. Growth Kinetics of Interfacial Phases
3.6. Mechanism of Bond Formation
4. Conclusions
- The results of the study showed that SDSS and Ti–6Al–4V can be successfully diffusion bonded using a Cu interlayer embedded with alumina nanoparticles at temperatures above 800 °C.
- The combination of longer bonding time and high bonding temperature leads to the formation of various Ti–Cu intermetallic compounds within the interface. The use of a Cu interlayer prevented the formation of the more brittle intermetallic compounds of Fe–Ti and Ti–C.
- The addition of Al2O3 nanoparticles was successful in restricting the growth of a continuous intermetallic layer and caused a change in the volume, size, and shape of the intermetallic compounds formed by pinning grain boundaries and restricting grain growth.
Author Contributions
Funding
Conflicts of Interest
References
- Muhamed, M.; Omar, M.; Abdullah, S.; Sajuri, Z.; Zamri, W.W.; Abdullah, M. Brazed Joint Interface Bonding Strength of AR500 Steel and AA7075 Aluminium Alloy. Metals 2018, 8, 668. [Google Scholar] [CrossRef] [Green Version]
- Suoranta, R.; Kah, P.; Martikainen, J.; Magnus, C. Techniques for joining dissimilar materials: Metals and polymers. Rev. Adv. Mater. Sci. 2014, 36, 152–164. [Google Scholar]
- Pardal, G.; Ganguly, S.; Williams, S.; Vaja, J. Dissimilar metal joining of stainless steel and titanium using copper as a transition metal. Int. J. Adv. Manuf. Technol. 2016, 86, 1139–1150. [Google Scholar] [CrossRef] [Green Version]
- Satoh, G.; Yao, Y.L.; Qiu, C. Strength, and microstructure of laser fusion-welded Ti-SS dissimilar material pair. Int. J. Adv. Manuf. Technol. 2013, 66, 469–479. [Google Scholar] [CrossRef]
- Kumar, N.N.; Ram, G.D.J.; Bhattacharya, S.S.; Dey, H.C.; Albert, S.K. Spark Plasma Welding of Austenitic Stainless Steel AISI 304L to Commercially Pure Titanium. Trans. Indian Inst. Met. 2015, 62, 289–297. [Google Scholar] [CrossRef]
- Shakil, M.; Tariq, N.H.; Ahmad, M.; Choudhary, M.A.; Akhter, J.I.; Babu, S.S. Effect of ultrasonic welding parameters on microstructure and mechanical properties of dissimilar joints. Mater. Des. 2014, 55, 263–273. [Google Scholar] [CrossRef]
- Verma, J.; Taiwade, R.V. Effect of welding processes and conditions on the microstructure, mechanical properties and corrosion resistance of duplex stainless steel weldments—A review. J. Manuf. Process. 2017, 25, 134–152. [Google Scholar] [CrossRef]
- Buffa, G.; Fratini, L.; Micari, F. Mechanical and microstructural properties prediction by artificial neural networks in FSW processes of dual phase titanium alloys. J. Manuf. Process. 2012, 14, 289–296. [Google Scholar] [CrossRef]
- Tanaka, K.; Nakazawa, T.; Sakairi, K.; Sato, Y.; Kokawa, H.; Omori, T.; Ishida, K. Feasibility of Iridium Containing Nickel Based Superalloy Tool to Friction Stir Spot Welding of High Strength Steel. Miner. Met. Mater. Ser. 2017, 29–35. [Google Scholar] [CrossRef]
- Bakavos, D.; Prangnell, P.B. Mechanisms of joint and microstructure formation in high power ultrasonic spot welding 6111 aluminium automotive sheet. Mater. Sci. Eng. A 2010, 527, 6320–6334. [Google Scholar] [CrossRef]
- Akhtar, T.S.; Cooke, K.O.; Khan, T.I.; Shar, M.A. Nanoparticle enhanced eutectic reaction during diffusion brazing of aluminium to magnesium. Nanomaterials 2019, 9, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atieh, A.M.; Khan, T.I. Application of Ni and Cu nanoparticles in transient liquid phase (TLP) bonding of Ti-6Al-4V and Mg-AZ31 alloys. J. Mater. Sci. 2014, 49, 7648–7658. [Google Scholar] [CrossRef]
- Cooke, K.O.; Khan, T.I.; Oliver, G.D. Transient liquid phase diffusion bonding Al-6061 using nano-dispersed Ni coatings. Mater. Des. 2012, 33, 469–475. [Google Scholar] [CrossRef]
- Cooke, K.O. A study of the effect of nanosized particles on transient liquid phase diffusion bonding Al6061 metal-matrix composite (MMC) using Ni/Al2O3 Nanocomposite Interlayer. Metall. Mater. Trans. B 2012, 43, 627–634. [Google Scholar] [CrossRef]
- Balasubramanian, M. Characterization of diffusion-bonded titanium alloy and 304 stainless steel with Ag as an interlayer. Int. J. Adv. Manuf. Technol. 2016, 82, 153–162. [Google Scholar] [CrossRef]
- Mo, D.F.; Song, T.F.; Fang, Y.J.; Jiang, X.S.; Luo, C.Q.; Simpson, M.D.; Luo, Z.P. A review on diffusion bonding between titanium alloys and stainless steels. Adv. Mater. Sci. Eng. 2018, 2018, 8701890. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, O.; Iijima, Y. Diffusion of copper, silver, and gold in α-titanium. Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 1995, 72, 1649–1655. [Google Scholar] [CrossRef]
- van Beek, J.A.; Kodentsov, A.A.; van Loo, F.J.J. Phase equilibria in the CuFeTi system at 1123 K. J. Alloys Compd. 1995, 27, 97–103. [Google Scholar] [CrossRef]
- Arzt, E.; Göhring, E. A model for dispersion strengthening of ordered intermetallics at high temperatures. Acta Mater. 1998, 46, 6575–6584. [Google Scholar] [CrossRef]
- AlHazaa, T.I.K.A.; Haq, I. Transient liquid phase (TLP) bonding of Al7075 toTi–6Al–4V alloy. Mater. Charact. 2010, 61, 312–317. [Google Scholar] [CrossRef]
- F, A.; Kajihara, M. Numerical Analysis for Kinetics of Reactive Diffusion Controlled by Boundaryand Volume Diffusion in a Hypothetical Binary System. Mater. Trans. 2008, 49, 294–303. [Google Scholar]
- Minho, O.; Kajihara, M. Kinetics of Solid-State Reactive Diffusion between Au and Al. Mater. Trans. 2011, 52, 677–684. [Google Scholar]
Alloys | Al | Mn | V | Cr | Ag | Cu | Si | Ni | Mg | Ti | Fe | C | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SDSS | 1.1 | 0 | 0 | 25 | 0 | 0.43 | 0.02 | 7 | 0 | 0 | Bal. | 0.03 | 4 |
Ti–6Al–4V | 6 | 0.23 | 4 | 0 | 0.86 | 0 | 0.15 | 0 | 2.7 | Bal. | 0 | 0 | 0 |
Phase | Al | Ti | V | Fe | Cu | C | Cr | Ni | Possible Phase |
---|---|---|---|---|---|---|---|---|---|
P1 | - | 0.22 | - | 61.57 | 0.68 | 3.51 | 24.45 | 5.73 | |
P2 | 1.86 | 28.64 | 1.03 | 0.54 | 67.34 | - | - | 0.59 | TiCu2 |
P3 | 2.43 | 33.78 | 1.24 | 1.26 | 58.45 | 2.34 | - | - | TiCu2 |
P4 | 0.32 | 41.31 | 0.73 | - | 55.54 | 2.1 | - | - | TiCu |
P5 | 1.36 | 41.55 | 1.40 | 1.13 | 51.32 | 2.89 | TiCu | ||
P6 | 5.53 | 79.00 | 4.83 | 0.45 | 10.18 | - | - | - | Ti2Cu |
P7 | 7.49 | 47.08 | 1.95 | 40.47 | 1.47 | 1.08 | 0.46 | TiCu/Al2O3 | |
P8 | 1.35 | 41.55 | 1.40 | 1.13 | 51.32 | 2.89 | 0.36 | - | Tix Cux-Fex |
P9 | 2.19 | 54.19 | 1.91 | 0.81 | 37.77 | 2.58 | 0.29 | 0.26 | Ti2Cu |
Bonding Temperature (K) | Interlayer Thickness (µm) | Rate Coefficient k (µm/s1/2) | Q (kJ/mol) |
---|---|---|---|
1073 | 10 | 0.236 | 110.3 |
1123 | 15.4 | 0.362 | 111.4 |
1173 | 63.2 | 1.482 | 102.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cooke, K.O.; Richardson, A.; Khan, T.I.; Shar, M.A. High-Temperature Diffusion Bonding of Ti–6Al–4V and Super-Duplex Stainless Steel Using a Cu Interlayer Embedded with Alumina Nanoparticles. J. Manuf. Mater. Process. 2020, 4, 3. https://doi.org/10.3390/jmmp4010003
Cooke KO, Richardson A, Khan TI, Shar MA. High-Temperature Diffusion Bonding of Ti–6Al–4V and Super-Duplex Stainless Steel Using a Cu Interlayer Embedded with Alumina Nanoparticles. Journal of Manufacturing and Materials Processing. 2020; 4(1):3. https://doi.org/10.3390/jmmp4010003
Chicago/Turabian StyleCooke, Kavian O., Anthony Richardson, Tahir I. Khan, and Muhammad Ali Shar. 2020. "High-Temperature Diffusion Bonding of Ti–6Al–4V and Super-Duplex Stainless Steel Using a Cu Interlayer Embedded with Alumina Nanoparticles" Journal of Manufacturing and Materials Processing 4, no. 1: 3. https://doi.org/10.3390/jmmp4010003
APA StyleCooke, K. O., Richardson, A., Khan, T. I., & Shar, M. A. (2020). High-Temperature Diffusion Bonding of Ti–6Al–4V and Super-Duplex Stainless Steel Using a Cu Interlayer Embedded with Alumina Nanoparticles. Journal of Manufacturing and Materials Processing, 4(1), 3. https://doi.org/10.3390/jmmp4010003