Next Article in Journal
Intelligent Fault Diagnosis of Bearings Based on Energy Levels in Frequency Bands Using Wavelet and Support Vector Machines (SVM)
Next Article in Special Issue
Application of Carbon Dioxide Snow in Machining of CGI using an Additively Manufactured Turning Tool
Previous Article in Journal
Investigation of Feedstock Preparation for Injection Molding of Oxide–Oxide Ceramic Composites
Previous Article in Special Issue
High Seam Surface Quality in Keyhole Laser Welding: Buttonhole Welding
Article Menu
Issue 1 (March) cover image

Export Article

Open AccessArticle

Metallurgical Analysis of Chip Forming Process when Machining High Strength Bainitic Steels

Laboratoire d’Etudes des Microstructures et de Mécanique des Matériaux, Ecole Nationale Supérieure d’Arts et Métiers Campus de Metz, Metz Technopôle, 4 rue Augustin Fresnel, 57078 Metz, France
ArcelorMittal Global R&D, Centre R&D Bars & Wires, Voie Romaine, BP 30320, 57283 Metz, France
Author to whom correspondence should be addressed.
J. Manuf. Mater. Process. 2019, 3(1), 10;
Received: 18 December 2018 / Revised: 16 January 2019 / Accepted: 17 January 2019 / Published: 19 January 2019
(This article belongs to the Special Issue New Findings and Approaches in Machining Processes)
PDF [9151 KB, uploaded 19 January 2019]


In the following work, we propose a metallurgical approach to the chip formation process. We focus on a turning application of high strength steel in which chips are produced by adiabatic shear bands that generate cutting force signals with high frequency components. A spectral analysis of these signals is applied and highlights peaks above 4 kHz depending on the cutting conditions. A microscopic analysis on the chip sections provided data on chip breaking and serration mechanisms. Shear band spacing and excitation frequency of the whole cutting system were calculated and gave a good correlation with cutting forces spectra. View Full-Text
Keywords: turning; machinability; bainitic steel; chip formation mechanism turning; machinability; bainitic steel; chip formation mechanism

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Haddad, F.; Lescalier, C.; Desaigues, J.-E.; Bomont-Arzur, A.; Bomont, O. Metallurgical Analysis of Chip Forming Process when Machining High Strength Bainitic Steels. J. Manuf. Mater. Process. 2019, 3, 10.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics



[Return to top]
J. Manuf. Mater. Process. EISSN 2504-4494 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top