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Abstract: Multi-Unmanned Aerial Vehicle (UAV) enabled Wireless Sensor Networks (WSNs) provide
a wide range of applications, covering civilian and military expeditions along with geographical
navigation, control, and reconnaissance. The coordinated networks formed between the UAVs and
the WSNs help in enhancing the issues related to quality as well as coverage. The overall coverage
issues result in starvation as an effect of long waiting time for the nodes, while forwarding the
traffic. The coverage problem can be resolved by an intelligent choice of UAV way-points. Therefore,
a specialized UAV mobility model is required which takes into account the topological structure as
well as the importance of strategic locations to fix UAV way-points and decide the data transmission
paradigm. To resolve this problem, a novel mobility model is proposed, which takes into account the
attraction factor for setting up the way-points for UAV movements. The model is capable of deciding
between the locations which result in more coverage, increased throughput with lesser number of
UAVs employed, as justified by the simulation results and comparative evaluations.
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1. Introduction

Unmanned aerial vehicles (UAVs) have shown tremendous growth, both in the areas of research
and application. UAVs are capable of supporting a wide range of civilian and military applications as
a result of their flexible movements and ease of configurations [1,2]. UAVs can further be deployed to
form collaborative networks with the ground nodes. The cooperation between ground and aerial nodes
has resulted in significant gains in data dissemination, monitoring, and control over strategic locations.
UAVs also prove significant when it comes to data gathering from inaccessible locations. One such
case is autonomous networking where UAVs help with raising the problem of coverage, failures,
limiting guidance and dead nodes by acting as supervisors [3]. Efficient and intelligent surveying is
one of the key aspects of UAV networks. Nature-based algorithms help in performing cooperative
rendezvous and efficient task allocation for coordinated UAV networks [4]. A cooperative ground to
air surveillance mechanism that employs UAVs for broad coverage and ground nodes for a detailed
zoomed in picture of the area under surveillance is presented in [5–7]. The various UAV application
scenarios are presented in Figure 1. The multi-hop characteristics of WSN data transmission were
replaced by direct communication between UAV and sensor nodes where UAVs served as sinks [7,8].
Alongside available performance gains, the network formation and setting up way-points for UAV
movements are an issue. Efficient deployment of available resources can help improve the coverage
and reduce the number of hops, in turn, boosting the overall throughput.
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Figure 1. UAV application scenarios.

Wireless Sensor Networks are spatially dispersed energy concentric dedicated sensor nodes,
largely deployed in inaccessible locations. A few major applications of WSN include air pollution
monitoring, forest fire detection, landslide detection, water quality monitoring, natural disaster
prevention, industrial monitoring, machine health monitoring, data center monitoring, data logging,
waste water monitoring, structural health monitoring and wine production [9–11]. Due to their small
size and ease of deployment, WSNs have found their applications in varying fields, but this comes
with an inherent drawback. WSNs are energy sensitive devices and suffer from depletion constantly.
Moreover, they are deployed in such specific areas where human intervention is not necessarily
possible. A major amount of energy is depleted while finding an optimal path and multi-hopping
transmissions. This optimal path finding becomes a major issue as the sensor nodes die frequently
due to their charge depletion resulting in iterative re-searching. Also together with path selection,
the multi-hopping produces un-necessary traffic, delays and packet drops. These issues present an
opportunity towards an efficient mobility model where WSN nodes are applied alongside UAV and
also help facilitate efficient data dissemination.

In order to test protocols, real-time scenarios or disaster management practices, simulations
serve as a major test bed. To adapt to the real-time traffic and realistic environment conditions,
the mobility model must be able to represent a realistic scenario. The mobility model defines
a movement scheme that mimics the real world movements, traffic and response scenarios. One key
characteristic of a good mobility model is its ability to adapt to the dynamically changing network
behavior. The major vehicular mobility models are classified as synthetic, survey-based, trace-based
and traffic simulation-based models. Synthetic models include the mathematical representation of the
realistic scenarios, whereas survey based models are basically derived from the movement surveys
conducted by authoritative organizations.

Trace-based models are built over real-time mobility traces. Trace based models are preferred over
both survey and synthetic models as it is not always possible to devise a mathematical representation
of the mobility or conduct a survey in order to gather information. Simulation-based models are
characterized by the near realistic simulated behavior [12]. The coordination between WSN and UAV
nodes is characterized by the erratic and dynamic behavior of the networks. Vehicular models like
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synthetic, survey and simulation-based approaches don’t suffice as the inherent inconsistencies of the
erratic network behavior hinder the overall mathematical formulation of the scenario as well as the
survey and simulation of every single scenario is not feasible. Trace-based models don’t suffice under
disaster conditions, military applications, and unforeseen events. In order to entertain the collaborative
network formation, a mobility model is required that understands the overall dynamic nature of the
network and can react to ever-changing topological conditions.

In this article, a novel mobility model for multi-UAV enabled Wireless Sensor networks is
proposed which takes into account the attraction factor for setting up the way-points for UAV
movements. The way-points are configured in order to increase the coverage without over application
of the UAV nodes and minimize the number of hops. The efficiency of the approach comes from its
simplicity and easily implementable nature. The proposed approach is compared against the entity
mobility models i.e., 3D Random Way Point, 3D Random Walk and the Gauss–Markov Mobility
Model [13]. The proposed mobility scheme is also compared against traditional techniques of fixed
UAV maneuvers.

The rest of the paper is organized as follows: Section 2 gives the detailed view of the problem
and our contribution. Section 3 consists of related works. Section 4 presents the system model and the
proposed approach. Section 5 evaluates the performance and finally Section 6 concludes the paper.

2. Problem Statement and Our Contribution

Multi-UAV enabled WSNs prove to be of considerable advantage, but, at the same time, require
careful selection of the metrics. A random choice of way-points or a scheme that restricts UAV to
a fixed particular topology leads to poor coverage and node starvation. Clustering techniques are
helpful to prevent long-range broadcasting, collisions, and multi-hopping, but a large number of
clusters in a geographical region prevents every node from getting an equal opportunity as well as
increasing the waiting time. Strategically important locations can range from dense to scarce based
on the number of active nodes. Developing attraction metrics from node density and message relay
timings can help in topographic UAV movements and help prevent loss of important information.

The proposed system model incorporates an easy and efficient UAV movement technique that
helps increase the coverage as well as provides reliable data dissemination. An efficient scheme for
clustering and head selection that provides every node with an opportunity to transmit as well prevent
the overhead communication between the cluster head and the node whenever UAV is in the range is
also presented. The stand-alone regions/not in range of UAV, are also provided with a mechanism
to transmit whenever they have data to send. Based on existing issues and the above-mentioned
shortcomings, the proposed framework provides the following contributions:

1. A simple, easy to implement mobility model that divides the overall topology into densely and
scarcely populated regions. This division is on the basis of average transmission densities of
the regions. These densely and scarcely populated regions, in turn, serve as the basis for UAV
way-point selection.

2. An implicit self-clustering scheme for data accumulation whenever UAV is not in range. Cluster
head swapping mechanism, which provides every node with a direct UAV link in order to achieve
increased transfer rates. The implicit clustering also serves as the basis for UAV way-point selection.

3. A modified version of Dijkstra’s Single Source Shortest Path algorithm where edge weight is
calculated not on the basis of region density but on the average transmission density (attraction
factor), providing preference to the strategically important locations.

4. An easy mechanism that facilitates data transfer for the nodes that don’t fall along the mobility
path of the UAV. These scarce nodes can send data transmissions either towards the base station
or the nearest cluster head according to an easy comparison.
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The major advantage of the proposed approach is in its simplicity as it doesn’t require any special
configurations. It employs the existing hardware, software and available specifications in a more
effective and efficient manner.

3. Literature Review

Mobility models that define velocity, direction and change in acceleration over the course of
simulation or real-time environments in ad hoc networks have been around for quite some time.
Mobility models find specific applications while testing new protocols and applications, which imposes
a restriction on them for being real-world feasible and easy to implement. We segregate the literature
into two parts. Initially, major ad hoc mobility models are described in brief. Then, recent contributions
towards the field of UAV mobility as well as the data dissemination techniques that rely on the mobility
paradigm are discussed in detail.

The Random Walk model derived from the Brownian motion is the most widely used mobility
model. The movements of the random walk model are characterized either by a constant time or
constant distance, i.e., the mobile nodes can change direction either after traveling a certain distance or
a certain time interval. Because of its simplicity and ability to simulate the spontaneous behavior of the
mobile nodes, many variants of the model have been proposed in the literature [13–16]. The Random
Way-point model is another memory less mobility model. The only addition to the random way-point
model is that it maintains a miniature pause time between swaps. The mobile node moves from one
destination to another with the speed chosen between a predefined maximum and minimum speed
after the pause interval [13,17]. The random way-point model without the mandatory pause has also
been implemented in literature [18]. The Gauss–Markov model for ad hoc networks can handle the
inherent randomness of the mobile nodes more efficiently. The nodes are initialized with specific speed
and time. Then, the speed and direction are updated regularly with the help of a tuning parameter.
To keep the nodes from edges, they are pushed away when nodes reach within a specific distance from
the edge [13,19,20]. Table 1 presents some of the ad hoc mobility models proposed in the literature,
which are centered around UAVs as relays.

Sharma and Kumar [3] presented a framework for multi-UAV guided ground ad hoc networks.
The authors have discussed how the network is formed among the multiple UAVs and an efficient
mechanism for making the search non-redundant. Bayesian Kalman filtering is employed for the
purpose of estimating the location of the Concepts, which, in turn, is used for updating previous maps.
The new concept of Topology Organizing Maps is also introduced by the authors who determine
the positioning of the nodes with respect to the introduced Virtual Concepts, which are identified
during cognitive mapping. The authors have successfully demonstrated the cooperative network
formation with the help of constant prediction and estimation with the help of neural models and
Kalman filtering.
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Table 1. UAV Mobility Models.

Approach Author Motivation Fundamental Process Features Analysis

UAV Group
Reconnaissance

Kuiper and
Nadjm Tehrani [21] Reconnaissance, Search, Acquisition Random Movement, Pheromone Driven

Visited Areas Marked by Pheromone
Trails, Banking Decisions by
Pheromone Smell Index

Real Time

Fleet Mobility Model Atten et al. [22]
Area Surveillance, Target Detection,
Global UAV Connectivity, Tracking
Lost Targets

Nature Based Mobility using Ant
Colony optimization (ACO)

Marking Area using Repulsive
Pheromone, Attraction Pheromone to
Allow Target Detection and Follow up

Simulated

Public Infrastructure
for UAV
Remote Sensing

Daniel
and Wietfeld [23]

Reconnaissance, Surveillance,
Communication, Concept of
Operations (CONOPS), Chemical,
Radiological, Biological and
Nuclear (CBRN)

Public Wireless Infrastructure Driven,
Wireless UAS Backbone

High and low Altitude Coverage, Air
to Air link, Ground level Coverage, Air
to Ground link, Cellular Base Station

Proposed
Approach

Paparazzi
Mobility Model Bouachir et al. [24]

Development of a Realistic
Model based on Paparazzi
UAV Movements

Paparazzi Movements: Stay-at,
Way-Points, Eight, Scan, Oval

Improved Geometric (Clustering,
Frequency, Meeting, Neighbor)
Measures as well as
Network Parameters

Omnet++

Semi-Random
Circular
Movement (SRCM)

Wang et al. [25] Mobility Model Capable of
Adapting to the Spatial Randomnes

Smooth Transition Movements,
Constant Radial Turns

Scanning Large Areas in less Time,
Potentially Increased Flight Time,
Avoiding Unreasonable Flight Paths

NS2

Ground Node Based
UAV deployment Han et al. [25] Optimized Mobile Ad Hoc Network

(MANET) Connectivity

Heuristic UAV Placement Algorithm,
Managed Velocity and Movement
Direction for Increased Connectivity

Increased Probable Message
Propagation, Decreased Probable
Network Division

Miniature
Hardware

Minimized
Trajectory Deviation

Kharchenko and
Kuzmenko [26] UAV collision avoidance

Dimensions of State Information
(vertical, horizontal or three
dimensional), Conflict Detection
Threshold, Conflict Resolution Method

Minimized Trajectory Deviation Real Time
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Sharma et al. [27] proposed that a nature-inspired algorithm can solve the problem of optimized
routing and congestion control as well. The authors presented an optimized fruit fly based routing
protocol for aerial and ground ad hoc networks. The algorithm also includes enhanced congestion
control mechanisms. The algorithm relies on the principle that all nodes playing food sources should
calculate their smell index, which, in turn, is used by source nodes to calculate the fruit fly index.
The base of the protocol is that the node acting as a source is called the fly and the relays for path
formation are considered as a food source, thus a node when evaluating itself is a fly and when
evaluating others is a food source. The route discovery, route maintenance, and route recovery are the
three stages of the protocol. The route discovery phase starts more or less like a link state protocol by
broadcasting hello messages. However, this is it for the link state. The hello messages are generated
by each node acting as a fly. When receiving a hello message, the node with the help of modeling
equations calculates the smell index and the sender node on receiving the acknowledgment calculates
a fruit fly index. The greater the value of this index, the more chances of the node getting selected
as a relay point. The feedback mechanism also exists which has beacons to keep everyone updated
about the network state. Each node maintains a forward connectivity and a flash feedback table.
The route maintenance takes into account the acknowledgments and periodic updates. The proposed
mechanism employs the estimation and prediction of the proposed window size. A watchdog policy
is also employed to have a check on a maximum number of interacting food sources. The smell index
is used to fix the initial length of the congestion window and a smell probabilistic model takes care of
increase or decrease of the window size. A route rehabilitation procedure is employed because there
a certain violation that is inevitable and the network demands recovery. The concluding remark on the
protocol is that it provides an efficient routing mechanism and congestion avoidance when routing
between two different kinds of networks [23].

A demand-based UAV placement model is discussed in [28], which employs a neural-based
cost model to estimate the zones where UAV is placed. The model is driven by the principle of
demand patterns, which, in turn, assign cast and density to separate areas and UAVs. A neural-based
model that applies multiple UAVs instead of a huge amount of small cells provides a less complex
and more efficient load balanced system. A huge application of small cells is also not cost effective.
UAVs, when used as flying access points, can provide reliable connectivity to failure-prone areas.
However, above all, a very fine and efficient approach is mandatory for UAV topology formation
and coverage issues. The proposed model that is driven by density and cost functions that compute
areas with high demands and UAVs are deployed based on these metrics. The target is not only to
find efficient positioning but also the altitude, as high altitude is more resilient to interference but
involves additional delays. Test results demonstrate that the efficiency increases by one third if UAVs
are employed instead of small cells.

A multi-objective genetic algorithm with objectives’ delivery hit rate, delivery cost, and delivery
latency, respectively, for data dissemination in delay tolerant UAV networks is presented in [29].
Delay Tolerant Networks (DTNs) prove to be very useful in disaster scenarios, intelligent transport
systems, wireless sensor networks, etc. A probabilistic cut node based forwarding scheme for delay
tolerant UAV networks is presented in [30]. The cut nodes belong to two different networks if the
network is viewed as a disconnected graph. Jaccard distance is used to measure the dissimilarity
between the nodes so as to judge which nodes belong to the same social network and still have
an outside connection. A traveling salesman based smooth path construction mechanism was
proposed in [31]. A three-dimensional UAV rotational and polarization model is presented in [32].
Han et al. [25,33] proposed a heuristic based adaptive scheme for UAV deployment. A Delaunay
triangulation mechanism is used to increase connectivity and the changing topology is monitored
constantly in order to adapt to the inevitable dynamic topology. Another adaptive algorithm for
filtering UAV movements using Kalman Filters is presented in [34]. UAV deployment and movement
models are also considered in [35–38].
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4. System Model and Proposed Approach

4.1. System Model

The proposed approach aims at improving the coverage and reliability of multi-UAV enabled
WSN. The article provides a novel self-clustering technique and a novel technique for setting
way-points for UAV movements. The network is comprised of UAV, WSN nodes and a base station.
The UAVs act as a relay between sensor nodes and the base station. The topology is classified as
dense, scarce and scarce but in proximity of the base station. The division is strictly based on network
characteristics according to the frequency of transmissions recorded in a particular region. The scarce
regions are effectively those regions which are not strategically important. Also decaying charge of
sensor nodes leads to the formation of scarce regions. The overall geography can be visualized as
a matrix with row-column coordinates serving as the way-points for successive UAV banks. Figure 2
presents a detailed view of the system model.

Figure 2. System model.

The static WSN nodes are randomly deployed over a certain geography of area |D|, which is
a subset of the Euclidean space Rd, according to the Poisson distribution, where a node k can transmit
anytime. k belongs to the Set (WSN) of the wireless sensor nodes. Each node k can transmit messages
x according to Equation (2):

k ∈ Set(WSN), Set(WSN) = 1, 2, 3, ..., n, (1)

P (x) =
e−λ|D|λ|D|x

x!
. (2)
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λ is defined as the likelihood parameter that estimates the average expected transmissions by a set of
WSN nodes:

λ =
1
n

n

∑
i=1

ki, (3)

where n is the number of WSN nodes, ki = 0, 1, 2, 3, ..., i and i = 0, 1, 2, 3, ..., n are the observed
occurrences of a transmission.

The overall area is marked in the form of successive checks with the base station placed in
any of the square or at the edge of the geography. The base station is capable of accepting direct
communication from the WSN nodes as well as the transmissions occurring from the UAVs, acting as
a relay between base station and the ground nodes.

The aerial vehicles that are effectively serving as relays move from one dense region to another
accepting the transmissions from the nodes lying in these regions as well as the regions falling
in the path between two successive banks of the UAV. The UAV is equipped with two antennas.
One omni-directional antenna is responsible for sensing the underlying topology for incoming
transmissions and broadcasting the messages regarding the availability of the UAV in a specific region.
The other bi-directional antenna provides the channel for incoming and outgoing transmissions.
During transmission phase, the omni-directional antenna is used for broadcasting a blocking message
for other WSN nodes. The scarce regions that do not directly fall under the UAV antennas facilitate
transmission by multi-hopping towards the base station or the cluster head of adjacent dense region.
The symbols used in the proposed article are summarized in Table 2. The next subsection describes the
proposed approach in detail.

Table 2. Symbol Table.

Symbol Description

Hd Average One Hop Distance
RT Number of Transmission per Unit Time
Si Number of Nodes Transmitting per Unit Time
Cn Number of Nodes in a Sector/Square/Region
Sa Sector Area
RTsys Number of Transmissions per Unit Time in the System
Sisys Number of Nodes Transmitting per Unit Time in the System
Cnsys Number of Nodes in the System
Sasys Overall System Area
TA,area Average number of Transmissions in a Self Cluster
TA,system Average number of Transmissions in Overall System
FA Attraction Function of a Sector/Square/Region
FAsys Attraction Function for the Overall System
We Edge Weight
We+ Normalized Edge Weight
Db Average Hops Towards Base Station
Dd Average Hops Towards Neighbouring Dense Sector/Square/Region

4.2. Proposed Approach

The proposed approach initiates by grouping together the ground nodes into clusters and then
segregating them on the basis of dense and scarce. The density of a particular cluster is associated with
the number of transmissions originating from the cluster in a given time interval. As the UAV banking
is based on the coordinates of the particular row-column of the subdivided area matrix, the square
space as a whole is considered to be one cluster. The WSN nodes falling into a particular sector (block
of the matrix) are default considered into the same cluster. Equation (4) outlines the cluster head
selection process, where Hd is the average one hop distance. Equation (5) gives the metric calculation
for a single node:

Min(Hd), (4)
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Hdi
=

∑Cn
i=1 Dhop

Cn
, (5)

where Hdi
is the node under consideration, Dhop are one hop distance from the node under

consideration, given that the node coordinates lie within (c, xi, yi), (c, xj, yj), (c, xk, yk),(c, xl , yl) that is
within the same sector, where ci is the base station, and Cn is the number of nodes in the self-cluster.

The transfer between UAV and sensor nodes always happens through the cluster-head, with
the condition of Head Swap. The nodes with data to send forward this data towards their cluster
head where data is accumulated. When UAV is in range of the cluster head, the Head Swap occurs.
UAV becomes the cluster head of the sector to facilitate transfer not only from the designated cluster
head, but also allows the cluster members to send data directed towards the UAV.

The UAV way-points are set in a way that it moves from one dense cluster head towards another
dense cluster head. UAV way-points are decided on the basis of transmission density and distance.
Equation (6) defines the calculation of attraction function FA by means of transmission density:

FA =

√√√√(RT
Si

)
×
(

Cn

Sa

)
, (6)

where RT is the number of transmissions per unit time in a sector, Si is the number of nodes transmitting
per unit time in a given sector, Cn is the number of nodes in a sector and Sa is the sector area.

Similarly, the FAsys for the whole system is calculated according to Equation (7):

FAsys =

√√√√(RTsys

Sisys

)
×
(

Cnsys

Sasys

)
, (7)

where RTsys is the number of transmissions per unit time in the whole system, Sisys is the number of
nodes transmitting per unit in the system, Cnsys is the number of nodes in the system and Sasys is the
overall area.

The average number of transmissions in a given area or square which is effectively a self-cluster
and the overall average transmissions in the system are given by Equations (8) and (9):

TA,area =

∑Cn
i

(
RT
Cn

)
Cn

, (8)

TA,system =

∑
Cnsys
i

(
RTsys

Cnsys

)
Cnsys

, (9)

where TA,area and TA,system are the average number of transmissions in a self-cluster and overall
system, respectively.

The inequality in Equation (10) identifies the dense clusters from the scares ones. The clusters
lying on the left side of the inequality are considered to be dense clusters, whereas the clusters lying
on the right side of the inequality are considered to be scarce clusters:

TA,area ≤ FA < TA,system. (10)
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The model uses a modified version of Dijkstra’s Single Source Shortest Path algorithm where
edge weights are given by Equations (11) and (12):

We =

√√√√√√√(∑Cn
i

(
RT
Cn

)
Cn

−
∑

Cnsys
i

(
RTsys

Cnsys

)
Cnsys

)2

, (11)

We+ =
1

FAsys −We
, (12)

whereWe is the edge weight andWe+ are the normalized edge weights used by the Single Source
Shartest Path (SSSP) algorithm.

The densely populated sectors are serviced by UAV maneuvers directly along with the sectors
which fall in line with two consecutive UAV banks. The scarce sectors that don’t fall in the path of
UAV are the designated Lone sectors. Lone sectors send hello packets towards nearby dense regions
and the base station when the network is initialized. The purpose of the hello packets is to determine
the number of active nodes in the region and number of hops required to reach dense sector and base
station, respectively. Cluster heads belonging to the lone sectors forward packets towards the base
station when the inequality in Equation (13) is satisfied; otherwise, packets are forwarded towards
dense regions of the geographical area:

Db ≤ Dd, (13)

where Db and Dd are the average number of hop counts from the base station and nearest dense
cluster, respectively.

The overall proposed approach is presented in Figure 3 in the form of an activity flow scenario.
The complete Mobility Model alongside cluster and way-point selection is underlined in Algorithm 1.
Algorithm 1 on initiation calls Algorithm 2, which deals with cluster head selection and overall
topology formation. The algorithm further identifies the regions as dense and scarce. The link costs
that are further used for deciding the UAV traversal routine are also determined by the Algorithm 2.
The UAV path is generated by the Algorithm 3. Algorithm 4 is responsible for the control and
coordination of data transmission. The algorithm facilitates transfer of data from scarce clusters,
the clusters that don’t directly fall under the UAV path. These clusters are identified as the Lone
clusters. The Lone clusters or regions estimate their average hop distance from the base station and the
adjacent dense region. This hop count information is used for facilitating the data transmission to and
from the Lone regions.

Figure 3. Proposed approach activity flow.
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Algorithm 1 Proposed Approach

Initialize Algorithm
Topology Formation ();
UAV Path Generation ();
Data Transmission ();
Data Transmission Lone Regions ();
Exit
End

Algorithm 2 Topology Formation

Start
Input: Set of WSN Nodes Wi

Initialize Network
Mark sensor nodes to a sector w.r.t (c, xi, yi), (c, xj, yj), (c, xk, yk),(c, xl , yl)

Cluster Head selection of a square −→ Min(Hd)

Hdi
=

∑Cn
i=1 Dhop

Cn

Calculate Attraction Factor

FA =

√√√√(RT
Si

)
×
(

Cn

Sa

)

FAsys =

√√√√(RTsys

Sisys

)
×
(

Cnsys

Sasys

)
Calculate average transmissions

TA,area =

∑Cn
i

(
RT
Cn

)
Cn

TA,system =

∑
Cnsys
i

(
RTsys

Cnsys

)
Cnsys

Identify dense and scarce clusters
Dense −→ TA,system ≤ FA

Scarce −→ FA < TA,system

Calculate link costs −→ We =

√√√√√√√(∑Cn
i

(
RT
Cn

)
Cn

−
∑

Cnsys
i

(
RTsys

Cnsys

)
Cnsys

)2

Normalize Link Cost

We+ =
1

FAsys −We

Exit
End
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Algorithm 3 UAV Path Generation

initialize Dbs = 0 , Path = []

while wq do wq −→ queueo f clusterheads
Select cluster head Ci with minWe+i

Dbs =We+i

for EveryNeighborCj of Ci do
Calculate Dj

Dj =We+i +We+i→j

if Dj <We+j then
Dbs = Dj

End If

End For
Path = Ci → Cj

Return Path, Dbs

End while
Exit
End

Algorithm 4 Data Transmission Lone Regions

Node from Lone sector
Identify Neighboring dense sectors.
Broadcast “Hello”← Estimate Hop Count
Sort clusters, base station in Order of Hop Count.
while Node with data do

Select Optimal Cluster or Base Station
if Node With Data then

transmit
else

Select next optimal Cluster or Node

End If
Iterate till Node with data = FALSE

End While
Exit
End

5. Performance Evaluations

The proposed technique relies heavily on, as well as exploits, the movement characteristics of
UAV in order to achieve significant gains over the already existing models. The evaluation and testing
of the approach are done on a model consisting of the base station, WSN motes and the UAVs serving
as relays by using NS-3 (version ns-3.28, NSNAM, Washington, DC, USA) and Matlab (version R2018a
Online Licence, MathWorks, Natick, MA, USA). The testing is performed on a 1200 × 1200 m2 area.
Table 3 lists the detailed simulation settings for the proposed model.
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Table 3. Simulation Settings.

Simulation Settings Values

Ground Nodes 100
UAV 1
Ground Node Type Static WSN
Area 1200× 1200 m2

WSN-WSN Communication IEEE 802.11, Direct Sequence Spread Spectrum (DSSS) Rate 1 Mbps
WSN UAV Communication Low Power Wide Area Network (LPWAN), 2 km Line of Sight Transmission
Propagation Loss Model Fiss Propagation Loss Model
Packet Size 512 bytes
Data Rate 5120 bytes/s
Data Burst 10 s
Bit Rate Constant
Protocol User Datagram Protocol (UDP)
Simulation NS3
Analysis Matlab

The following parameters are used for the testing of the model:

1. Coverage: Network Coverage is defined as the geographical area covered by the network. In the
proposed approach, Coverage is defined as the number of nodes served along the path of the
UAV given a certain time interval.

2. Throughput: Throughput is defined as the number of successful transmissions over the network.
In the proposed approach, average throughput is measured across the network. A throughput
variation chart is also presented in order to demonstrate consistency and QoS levels of the
proposed approach.

3. Latency: Latency is described in terms of propagation delay and serialization delay,
where propagation delay is a function of the distance between the nodes and speed of the
carrier, and serialization delay is a function of packet size and transmission rate. The amount
of data flowing through a network or a network bottleneck can be visualized as the function of
latency and directly affects the throughput of the system irrespective of the technology used.

4. Delay: Delay is defined as congestion or link unavailability and is generally considered a measure
of the amount of time a signal takes from source to destination. The model aims at limiting the
delay to a constant factor by facilitating direct communication between UAV and WSN nodes.

5. Jitter: The non-deterministic behavior of the network is outlined by jitter. Delay sensitive models
are also sensitive to jitters and can be described as the variation in delay.

6. Packet Delivery Ratio (PDR): PDR is defined as the ratio of packets sent to the number of packets
successfully delivered. Throughput serves as an effective measure of performance of a node or
a section, but PDR addresses the quality of network design that can lead to poor overall throughput.

7. Data Transferred: Data transferred is the overall data transferred from source to destination nodes
throughout the network. It serves as the metric that estimates data over a given connection
during the given time interval.

8. End To End Delivery (EED): End To End Delivery is a parameter that estimates per packet delivery
from source to destination. Unlike throughput, which treats the whole model as an entity and
calculates the average, the EED is a per packet successful evaluation from source to destination.

9. Packet Drop: Packet drop is the measure of the number of unsuccessful transmissions across the
network. The packet drop is measured with respect to the number of packets lost in contrast
with the number of packets sent. Packet drop can be caused by UAV, not in range or congestion
in the network. The frequent broadcasts from the WSN nodes can also result in packet drop.
The topological awareness and route calculation of the UAV aims at limiting the packet drop to
minimum levels.
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The proposed approach was evaluated against the above-defined metrics in comparison with the
3D Random Way Point, 3D Random Walk, Gauss–Markov Mobility Model and fixed UAV maneuvers.

The most critical point over which a mobility model can be evaluated is the coverage. Coverage
in terms of collaborative networks is defined as the number of ground nodes served or guided over
the course of time. The proposed approach provides a steep coverage of 98%.

The random way-point and random walk models are characterized by following the same direction
for longer tenures. Both the models provide excellent coverage if the ground nodes are laid across
their movement diagonal, which is not always, the case, in real-time scenarios. The random way-point
and random walk models provide 91% and 90% coverage, respectively. In the Gauss–Markov model,
the next way-point relies heavily on the previous speed and direction. It possesses the tendency to skip
densely populated regions as the next way-point is not selected on the basis of density and transmission
characteristics of the nodes. The model provides 55% coverage.

The fixed maneuver for a proactive model performs well over its fixed coordinates, but the
overall geography demands constant survey and analysis to manually fix new coordinates over
time. The 10% coverage provided by the model comes from the path fixed previously without
considering the ever-changing patterns of the erratic dynamic network. Figure 4 presents the overall
coverage comparisons.

Figure 4. Geographical coverage comparison among the Proposed Approach, Random Waypoint,
Random Walk, Fixed Manuevers and Gauss Markov.

Throughput is directly proportional to the coverage. The greater the coverage, the more ground
nodes gets serviced or receive a chance to forward data. Throughput is also affected by the density of
the areas served. The close-packed areas tend to have more ground nodes thus increasing the chance
of data transmission. The approach works better as it focuses on identifying the denser areas from the
scarce ones and then selecting way-points accordingly instead of random movement or movements
dictated by speed and direction. The pre-fixed maneuvers do not suffice as both life and transmission
density of the WSN nodes is dynamic, and the technique cannot adapt to the changes. The proposed
technique provides throughput levels of 82%.

The random-way-point and random walk models achieve 74% and 72% throughput, respectively.
The Gauss–Markov model achieves a throughput of 55.7% while the fixed technique significantly
underperforms with throughput levels of 7.5%. Figure 5 presents the throughput evaluation of
approaches in confederation. To test the Quality of Service provided by the proposed approach,
the increases and decreases in throughput levels over the course of simulation are presented in the bar
graph. The test results demonstrate consistent throughput levels for the proposed approach. Figure 6
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presents the QoS comparison based on the throughput levels for the stated approaches. Although
random way-point and random walk are evenly matched, they underperform significantly.

Figure 5. Throughput comparison among the Proposed Approach, Random Waypoint, Random Walk,
Fixed Manuevers and Gauss Markov.

Figure 6. QoS comparison among the Proposed Approach, Random Waypoint, Random Walk,
Fixed Manuevers and Gauss Markov based on throughput levels.

The latency of the system, which is a measure of a signal’s travel time from source to destination,
plays an important role in the applicability of a model. The system throughput drastically declines
with the increase in latency. The system performance degrades, as with increasing latency, the packet
drop also increases. The proposed model features an overall latency of 9%. The random way-point,
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random walk, Gauss–Markov and fixed models have 12.5%, 12.5%, 15% and 85% latency, respectively.
The latency comparisons are presented in Figure 7.

Figure 7. Latency comparison among the Proposed Approach, Random Waypoint, Random Walk,
Fixed Manuevers and Gauss Markov.

The minimized average delay is a necessary condition for an efficient model. Facilitation of direct
communication between UAV and sensor nodes as well as a reduction in the multi-hopping nature of
data transmission effectively brings down the overall delay. The statistically important areas are served
directly by the UAV and very few of the remaining scarce areas resort to multi-hopping. The average
delay of the proposed model is restricted to 0.625%.

The random way-point and random walk models have 11.25% and 35.625% delays, respectively.
The Gauss–Markov model with its variable velocity property restricts the average delay to 5%.
The fixed models have an important characteristic of following their well-defined path and always
staying in connection to the base station, thus effectively matching the proposed model with 0.625%
average delays. However, this delay is with respect to their coverage and throughput values.

Figure 8 gives the average delays for the different approaches. Jitter, which is the measure of the
variations in delay, is presented in Figure 9. With the minimized delay, the proposed approach features
the jitter value around 2% and the fixed maneuver model matches the jitter values of the proposed
approach. The random way-point, random walk, and Gauss–Markov models have 9%, 6%, and 5%
jitter, respectively.

PDR, which measures the number of packets delivered successfully across the network over the
course of time, is an important metric for the mobility model evaluation. The proposed approach
that features movement from one dense to another dense region and also collecting data from scarce
regions by means of multi-hopping or direct transmission towards base station has a high PDR value
of 99%. The random way-point and random walk models that boast of their capabilities of traversing
the whole geographical area slowly also possess high PDR of 91% and 90%, respectively, which is
slightly less than the proposed approach. The Gauss–Markov model has a PDR of 62%, while the fixed
model due to lack of its coverage has a resultant PDR of 12%. Figure 10 presents the PDR comparisons.

The overall data transferred and the end-to-end delivery comparisons are presented in
Figures 11 and 12. The proposed approach features 91% average data transferred statistics. The random
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way-point and random walk models are at 74% and 72%, respectively. Gauss–Markov and fixed models
deliver data transfer average of 49% and 7%, respectively.

The proposed approach features a constant EED delivery timing statistics, which is 0.8%.
The random way-point and random walk models result in 12.5% and 24.1%, respectively.
Gauss–Markov had an EDD of 3.3% and the fixed model matches the proposed approach as it is
following its fixed trajectory and consistent connection with the base station. However, this improved
characteristic of the fixed model is compromised by their lesser throughput and coverage values.

Figure 8. Delay comparison among the Proposed Approach, Random Waypoint, Random Walk,
Fixed Manuevers and Gauss Markov.

Figure 9. Jitter comparison among the Proposed Approach, Random Waypoint, Random Walk,
Fixed Manuevers and Gauss Markov.
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Figure 10. Packet Delivery Ratio comparison among the Proposed Approach, Random Waypoint,
Random Walk, Fixed Manuevers and Gauss Markov.

Figure 11. Amount of Data Transferred comparison among the Proposed Approach, Random Waypoint,
Random Walk, Fixed Manuevers and Gauss Markov.

Packet drop specifies the ability of the model to avoid creating congestion or not allowing nodes
to generate unnecessary traffic. Unnecessary traffic mostly comes from request-reply or data broadcast
messages. Figure 13 presents the comparison of packet drop in the specified approaches. The fixed
models have the highest packet drop of 83%. This high packet drop of the model is due to most
of the nodes resorting to multi-hopping or frequent contestation among the nodes for data transfer.
The Gauss–Markov model has a packet drop of 35%. The random way-point and random walk models
have slow convergence, but coverage is high. They have a drop rate of 4.1%. The proposed approach
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has a high coverage, less end-to-end delivery times and delay. The packet drop ratio of the proposed
approach is 0.8%.

Figure 12. End-to-End Delivery comparison among the Proposed Approach, Random Waypoint,
Random Walk, Fixed Manuevers and Gauss Markov.

Figure 13. Packet Drop comparison among the Proposed Approach, Random Waypoint, Random Walk,
Fixed Manuevers and Gauss Markov.

The overall comparative analysis of the proposed approach against the standard discussed
approaches is presented in Table 4. The statistical variations among the proposed and compared
approaches are presented in Table 5.
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Table 4. Comparative Analysis of the Proposed Approach against the featured techniques.

Metrics
Proposed
Approach

Random
Way-Point

Random
Walk

Gauss
Markov

Fixed
Maneuvers

Coverage 98% 91% 90% 55% 10%
Throughput 82% 74% 72% 55.7% 7.1%
Latency 8.3% 12.5% 12.5% 16% 86%
Delay 0.625% 11.25% 35.625% 5% 0.625%
Jitter 2% 9% 6% 5% 2%
PDR 99% 91% 90% 60% 12%
Data Transferred 91% 74% 72% 49% 7%
EED 0.8% 12.5% 24.1% 3.3% 0.8%
Packet Drop 0.8% 4.1% 4.1% 35% 83%

Table 5. Statistical variation among proposed and compared approaches.

Mean Std. Dev. Std. Error of Mean Variance Mode Median

Coverage

Proposed Approach 67.37 30.81 3.25 949.56 100.00 73.50
Random Waypoint 63.90 28.88 3.04 833.89 89.00 79.00
Random Walk 65.88 27.70 2.92 767.32 90.00 79.00
Fixed Maneuvers 7.90 0.67 0.07 0.45 8.00 8.00
Gauss–Markov 43.99 16.91 1.78 285.90 59.00 51.00

Data Transferred

Proposed Approach 411,306 195,463.98988 20,603.71362 3.82062 × 1010 632,340 432,540
Random Waypoint 369,756 164,153.46941 17,303.29497 2.69464 × 1010 511,920 453,060
Random Walk 371,694 155,860.53646 16,429.14309 2.42925 × 1010 508,680 443,340
Fixed Maneuvers 46,932 3952.15976 416.59422 1.56196 × 107 47,520 47,520
Gauss–Markov 254,610 96,515.75736 10,173.65411 9.31529 × 109 340,740 292,140

Delay

Proposed Approach 0.01298 4.3795 × 10−4 4.61639 × 10−5 1.918 × 10−7 0.01274 0.01306
Random Waypoint 0.19316 0.22999 0.02424 0.05289 0.09323 0.10398
Random Walk 0.61413 0.20325 0.02142 0.04131 0.51045 0.51045
Fixed Maneuvers 0.00208 0.0019 1.998 × 10−4 3.59281 × 10−6 0.00104 0.00117
Gauss–Markov 0.02259 0.01801 0.0019 3.2448 × 10−4 0.0445 0.00903

End to End Delivery

Proposed Approach 0.00694 2.72533× 10−4 2.87275 × 10−5 7.42745 × 10−8 0.00686 0.00688
Random Waypoint 0.12133 0.15818 0.01667 0.02502 0.05169 0.05744
Random Walk 0.36507 0.13633 0.01437 0.01859 0.29429 0.29429
Fixed Maneuvers 0.00619 5.29694× 10−5 5.58346 × 10−6 2.80575 × 10−9 0.00619 0.00619
Gauss–Markov 0.01914 0.0167 0.00176 2.78986 × 10−4 0.03948 0.00578

Jitter

Proposed Approach 0.00624 3.28373× 10−4 3.46136 × 10−5 1.07829 × 10−7 0.00592 0.00626
Random Waypoint 0.09954 0.11881 0.01252 0.01412 0.04785 0.05345
Random Walk 0.34526 0.12074 0.01273 0.01458 0.27826 0.27826
Fixed Maneuvers 9.41456× 10−4 8.51129× 10−4 8.97169 × 10−5 7.2442 × 10−7 4.69991× 10−4 5.31537× 10−4

Gauss–Markov 0.01171 0.01022 0.00108 1.04357 × 10−4 0.02414 0.0037

Latency

Proposed Approach 0.0881 0.00118 1.24404 × 10−4 1.39287 × 10−6 0.08839 0.08838
Random Waypoint 0.09936 0.01469 0.00155 2.15671 × 10−4 0.09363 0.09363
Random Walk 0.09495 0.00311 3.27508 × 10−4 9.65355 × 10−6 0.09542 0.09542
Fixed Maneuvers 0.76525 0.32149 0.03389 0.10336 1.04832 0.92693
Gauss–Markov 0.13303 0.01287 0.00136 1.65581 × 10−4 0.13934 0.13934

Packet Drop

Proposed Approach 0.000 0.000 0.000 0.000 0.000 0.000
Random Waypoint 1.409 0.850 0.090 0.722 1.116 1.116
Random Walk 1.135 0.244 0.026 0.060 1.189 1.189
Fixed Maneuvers 9.280 1.733 0.183 3.002 10.232 10.095
Gauss–Markov 4.028 0.959 0.101 0.920 4.516 4.516
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Table 5. Cont.

Mean Std. Dev. Std. Error of Mean Variance Mode Median

Packet Delivery Ratio

Proposed Approach 1.00000 0.00000 0.00000 0.00000 1.00000 1.00000
Random Waypoint 0.87195 0.07724 0.00814 0.00597 0.89856 0.89856
Random Walk 0.89678 0.02206 0.00233 0.00049 0.89198 0.89198
Fixed Maneuvers 0.16948 0.15489 0.01633 0.02399 0.08421 0.09524
Gauss–Markov 0.63499 0.08680 0.00915 0.00753 0.59107 0.59107

Throughput

Proposed Approach 5.67642 0.08361 0.00881 0.00699 5.65683 5.65727
Random Waypoint 5.10392 0.50364 0.05309 0.25365 5.34029 5.34029
Random Walk 5.27120 0.16014 0.01688 0.02564 5.24021 5.24021
Fixed Maneuvers 0.95980 0.87702 0.09245 0.76916 0.47696 0.53941
Gauss–Markov 3.80016 0.43892 0.04627 0.19265 3.58843 3.58843

6. Conclusions and Future Work

Efficient topological formations and coordinated movements help to achieve effective and
sustainable UAV-coordinated WSNs. In this article, a novel mobility scheme based on the transmission
density of the WSN nodes is proposed for moving UAVs in a coordinated manner for improved
coverage and better performance. The proposed approach is evaluated against Random way-point,
Random Walk, Gauss–Markov and Fixed Maneuver UAV movements. The random models produce
close but considerably fewer performance levels as long as the WSN nodes lie in their movement
corridor. The Gaussian model gives results on average performance when applied to the UAV
movements. The fixed maneuvering scheme produces less delay but with a huge compromise on
throughput, coverage, and latency. The proposed approach shows significant gains in coverage,
throughput, jitter, and data transfer ratios. The packet drop rate is decreased exponentially and
massive gains are observed for packet delivery ratio.

The proposed approach presents a generalized model for UAV traversals according to the
transmission statistics of the underlying geography. The model can be extended to include multi-path
traversals that will effectively result in better coverage, throughput and data transfer results in less
time. The proposed approach can also be incorporated into Software Defined Networks as a controller
component and thus increase its applicability towards various system models and approaches.
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