Automatic Recognition of Black-Necked Swan (Cygnus melancoryphus) from Drone Imagery
Abstract
:1. Introduction
Methodology | Advantages | Disadvantage | References |
---|---|---|---|
Direct counting versus manual drone counting | Objects on the images can be counted more than once by different observers. Improving the accuracy of abundance determination over classical sampling (i.e., binocular) and the spatial position of each individual can be obtained. | There may be observer and experience bias in image analysis. | [16,17,18,21,22,24] |
Larger areas can be sampled simultaneously, making it a cost-efficient tool. In addition, it makes it possible to reach remote places. | Larger areas can be sampled simultaneously, making it a cost-efficient tool. In addition, it makes it possible to reach remote places.A large amount of information is generated, and ample storage and processing capacity is required. If the fly does not consider the basic biology of animals can cause disturbances to normal behavior. | [21,23,24] | |
The images can be reviewed and used for various studies. | Storage power must be available. | [16,24] | |
Use of recognizers | Reduces or eliminates observer bias and reduces analysis time for repeated sampling | The confusion matrix must be created, to determine the true positive, true negative, false positive, and false negative cases and make a correct interpretation based on the species. | [24] |
2. Materials and Methods
2.1. Model and Study Area
2.2. Building the Recognizer
2.3. Evaluating the Accuracy of the Recognizer and Confusion Matrix
3. Results
3.1. Filtering Process
3.2. Confusion Matrix
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Siddig, A.; Ellison, A.; Ochs, A.; Villar-Leeman, C.; Lau, M. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Indic. 2016, 60, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Young, J.; Murray, K.; Strindberg, S.; Buuveibaatar, B.; Berger, J. Population estimates of endangered mongolian saiga Saiga tatarica mongolica: Implication for effective monitoring and population recovert. Oryx 2010, 44, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Collen, B.; McRae, L.; Deinet, S.; De Palma, A.; Carranza, T.; Cooper, N.; Loh, J.; Baillie, J. Predicting how populations decline to extinction. Phil. Trans. Royal. Soc. Lond. B 2011, 366, 2577–2586. [Google Scholar] [CrossRef] [Green Version]
- Hollings, T.; Burgman, M.; van Andel, M.; Gilbert, M.; Robinson, T.; Robinson, A. How do you find the green sheep? A critical review of the use of remotely sensed imagery to detect and count animals. Methods Ecol. Evol. 2018, 9, 881–892. [Google Scholar] [CrossRef]
- González, L.; Montes, G.; Puig, E.; Johnson, S.; Mengersen, K.; Gaston, K. Unmanned aerial vehicles (UAVs) and artificial intelligence revolutionizing wildlife monitoring and conservation. Sensors 2016, 16, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, J.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 2013, 18, 299–305. [Google Scholar] [CrossRef]
- Rose, R.; Byler, D.; Eastman, J.; Fleishman, E.; Geller, G.; Goetz, S.; Guild, L.; Hamiltom, H.; Hansen, M.; Headley, R.; et al. Ten ways remote sensing can contribute to conservation. Conserv. Biol. 2015, 29, 350–359. [Google Scholar] [CrossRef]
- Wang, K.; Franklin, S.E.; Guo, X.; Cattet, M. Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists. Sensors 2010, 10, 9647–9667. [Google Scholar] [CrossRef]
- Turner, W.; Spector, S.; Gardiner, E.; Flandeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306–314. [Google Scholar] [CrossRef]
- Hildmann, H.; Kovacs, E. Using unmanned aerial vehicles (UAVs) as mobile sensing platforms (MSPs) for disaster response, civil security and public safety. Drones 2019, 3, 59. [Google Scholar] [CrossRef]
- Yao, H.; Qin, R.; Chen, X. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Christie, K.; Gilbert, S.; Brown, C.; Hatfield, M.; Hanson, L. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Front. Ecol. Environ. 2016, 14, 241–251. [Google Scholar] [CrossRef]
- Abd-Elrahman, A.; Pearlstine, L.; Percival, H. Development of pattern recognition algorithm for automatic bird detection from unmanned aerial vehicle imagery. Surv. Land Inf. Sci. 2005, 65, 37–45. [Google Scholar]
- Morgan, J.; Gergel, S.; Coops, N. Aerial photography: A rapidly evolving tool for ecological management. BioScience 2010, 60, 47–59. [Google Scholar] [CrossRef]
- Ambrosia, V.; Wegener, S.; Zajkowski, T.; Sullivan, D.; Buechel, S.; Enomoto, F.; Lobitz, B.; Johan, S.; Brass, J.; Hinkley, E. The Ikhana unmanned airborne system (UAS) western states fire imaging missions: From concept to reality (2006–2010). Geocarto Int. 2011, 26, 85–101. [Google Scholar] [CrossRef]
- Watts, A.; Ambrosia, V.; Hinkley, E. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.; Gaston, K. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Chabot, D.; Bird, D. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in? J. Unmanned Veh. Syst. 2015, 3, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Linchant, J.; Lisein, J.; Semeki, J.; Lejeune, P.; Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mamm Rev. 2015, 45, 239–252. [Google Scholar] [CrossRef]
- Duffy, P.; Anderson, K.; Shapiro, A.; Spina Avino, F.; DeBell, L.; Glover-Kapfer, P. Conservation Technology: Drones for Conservation; Conservation Technology Series; 2020; Volume 1, Available online: https://storymaps.arcgis.com/stories/bdbaf9d33e48437bab074354659159e3 (accessed on 1 January 2023).
- van Gemert, J.; Verschoor, C.; Mettes, P.; Epema, K.; Koh, L.; Wich, S. Nature conservation drones for automatic localization and counting of animals. Lect. Notes Comput. Sci. 2015, 8925, 255–270. [Google Scholar]
- Hodgson, J.; Mott, R.; Baylis, S.; Pham, T.; Wotherspoon, S.; Kilpatrick, A.; Raja, R.; Reid, I.; Terauds, A.; Koh, L. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 2018, 9, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- Lhoest, S.; Linchant, J.; Quevauvillers, S.; Vermeulen, C.; Lejeune, P. How many hippos (HOMHIP): Algorithm for automatic counts of animals with infra-red thermal imagery from UAV. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch 2015, XL-3/W3, 355–362. [Google Scholar] [CrossRef]
- Chabot, D.; Francis, C. Computer-automated bird detection and counts in high-resolution aerial images: A review. J. Field Ornithol. 2016, 87, 343–359. [Google Scholar] [CrossRef]
- Chen, Y.; Shioi, H.; Fuentes Montesinos, C.; Koh, L.; Wich, S.; Krause, A. Active Detection via Adaptive Submodularity. In Proceedings of the 31st International Conference on Machine Learning, Beijing China, 21–26 June 2014; pp. 55–63. [Google Scholar]
- Chabot, D. Systematic Evaluation of a Stock Unmanned Aerial Vehicle (UAV) System for Small-Scale Wildlife Survey Applications. Master’s Thesis, McGill University, Montreal, QC, Canada, July 2009. [Google Scholar]
- Laliberte, A.; Rango, A. Texture and Scale in Object-Based Analysis of Subdecimeter Resolution Unmanned Aerial Vehicle (UAV) Imagery. IEEE Trans. Geosci. Remote Sens. 2009, 47, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Laliberte, A.; Ripple, W. Automated Wildlife Counts from Remotely Sensed Imagery. Wildl. Soc. Bull. 2003, 31, 362–371. [Google Scholar]
- Longmore, S.; Collins, R.; Pfeifer, S.; Fox, S.; Mulero-Pazmany, M.; Bezombes, F.; Goodwin, A.; De Juan Ovelar, M.; Knapen, J.; Wich, S. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems. Int. J. Remote Sens. 2017, 38, 2623–2638. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.; Mulero-Pázmány, M. Drones for conservation in protected areas: Present and future. Drones 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Seymour, A.; Dale, M.; Hammill, P.; Halpin Johnston, D. Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schlatter, R.; Salazar, J.; Villa, A.; Meza, J. Demography of Black-necked swans Cygnus melancoryphus in three Chilean wetland areas. Wildfowl. 1991, 1, 88–94. [Google Scholar]
- BirdLife International. Cygnus melancoryphus. IUCN Red List. Threat. Species 2016, e.T22679846A92832118. [Google Scholar] [CrossRef]
- Corti, P.; Schlatter, P. Feeding Ecology of the Black necked Swan Cygnus melancoryphus in Two Wetlands of Southern Chile. Stud. Neotrop. Fauna Environ. 2002, 37, 9–14. [Google Scholar] [CrossRef]
- Silva, C.; Schlatter, R.; Soto-Gamboa, M. Reproductive biology and pair behavior during incubation of the black-necked swan (Cygnus melanocoryphus). Ornitol. Neotrop. 2012, 23, 555–567. [Google Scholar]
- Salazar, J. Censo poblacional del Cisne de cuello negro (Cygnus melancoryphus) en Valdivia. 3er Simposio de Vida Silvestre. Medio Ambiente 1998, 9, 78–87. [Google Scholar]
- Schlatter, R. Distribución del cisne de cuello negro en Chile y su dependencia de hábitats acuáticos de la Cordillera de la Costa. In En Historia, Biodiversidad y Ecología de Los Bosques Costeros de Chile, 1st ed.; Smith-Ramírez, C., Armesto, J.J., Valdovinos, C., Eds.; Editorial Universitaria: Santiago, Chile, 2005; pp. 498–504. [Google Scholar]
- Vas, E.; Lescroël, A.; Duriez, O.; Boguszewski, G.; Grémillet, D. Approaching birds with drones: First experiments and ethical guidelines. Biol. Lett. 2015, 11, 20140754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barr, J.; Green, M.; DeMaso, S.; Hardy, T. Drone Surveys Do Not Increase Colony-wide Flight Behaviour at Waterbird Nesting Sites, But Sensitivity Varies Among Species. Sci. Rep. 2020, 10, 3781. [Google Scholar] [CrossRef] [Green Version]
- Polsby, D.; Popper, R. The third criterion: Compactness as a procedural safeguard against partisan gerrymandering. Yale Law Policy Rev. 1991, 9, 301–353. [Google Scholar] [CrossRef]
- Quantum GIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Proyect. 2017. Available online: http://qgis.osgeo.org (accessed on 10 October 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Hijmans, R. Raster: Geographic Data Analysis and Modeling, R Package Version 2.5-8. 2016. Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1892855 (accessed on 1 January 2023).
- Bivand, R.; Keitt, T.; Barry, R. Rgdal: Bindings for the Geospatial Data Abstraction Library, R Package Version 1.2-8. 2017. Available online: https://rdrr.io/cran/rgdal/ (accessed on 1 January 2023).
- Hijmans, R. Geosphere: Spherical Trigonometry, R Package Version 1.5-5. 2016. Available online: https://rdrr.io/cran/geosphere/ (accessed on 1 January 2023).
- Baddeley, A.; Turner, R. Spatstat: An R Package for Analyzing Spatial Point Patterns. J. Stat. Softw. 2005, 12, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Bivand, R.; Lewin-Koh, N. Maptools: Tools for Reading and Handling Spatial Objects, R package Version 0.9-2. 2017. Available online: https://cran.r-project.org/web/packages/maptools/index.html (accessed on 1 January 2023).
- Greenberg, J.; Mattiuzzi, M. GdalUtils: Wrappers for the Geospatial Data Abstraction Library (GDAL) Utilities, R Package Version 2.0.1.7. 2015. Available online: https://www.rdocumentation.org/packages/gdalUtils/versions/2.0.1.7 (accessed on 1 January 2023).
- Bivand, R.; Rundel, C. Rgeos: Interface to Geometry Engine—Open Source (GEOS), R Package Version 0.3-23. 2017. Available online: https://cran.r-project.org/web/packages/rgeos/index.html (accessed on 1 January 2023).
- Evans, J. SpatialEco, R Package Version 0.0.1-7. 2017. Available online: https://cran.r-project.org/package=spatialEco (accessed on 1 January 2023).
- Bengtsson, H.R. R.utils: Various Programming Utilities. R Package Version 2.5.0. 2016. Available online: https://cran.r-project.org/web/packages/R.utils/index.html (accessed on 1 January 2023).
- Ruuska, S.; Hämäläinen, W.; Kajava, S.; Mughal, M.; Matilainen, P.; Mononen, J. Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behav. Process. 2018, 148, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Aniceto, A.; Biuw, M.; Lindstrøm, U.; Solbø, S.A.; Broms, F.; Carroll, J. Monitoring marine mammals using unmanned aerial vehicles: Quantifying detection certainty. Ecosphere 2018, 9, e02122. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, E.; Winsen, M.; Sudholz, A.; Hamilton, G. Automated detection of wildlife using drones: Synthesis, opportunities and constraints. Methods Ecol. Evol. 2021, 12, 1103–1114. [Google Scholar] [CrossRef]
- Chabot, D.; Craik, S.; Bird, D. Population census of a large common tern colony with a small unmanned aircraft. PLoS ONE 2015, 10, e0122588. [Google Scholar] [CrossRef] [Green Version]
- Mader, S.; Grenzdörffer, G. Automatic Sea bird detection from high resolution aerial imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, 41, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Goebel, M.; Perryman, W.; Hinke, J.; Krause, D.; Hann, N.; Gardner, S.; LeRoi, D. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 2015, 38, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, J.; Baylis, S.; Mott, R.; Herrod, A.; Clarke, R.H. Precision wildlife monitoring using unmanned aerial vehicles. Sci. Rep. 2016, 6, 22574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brack, I.; Kindel, A.; Oliveira, L. Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, solutions, and challenges. Methods Ecol. Evol. 2018, 9, 1864–1873. [Google Scholar] [CrossRef]
- Garner, D.; Underwood, H.; Porter, W. Use of modern infrared thermography for wildlife population surveys. Environ. Manag. 1995, 19, 233–238. [Google Scholar] [CrossRef]
- Franke, U.; Goll, B.; Hohmann, U.; Heurich, M. Aerial ungulate surveys with a combination of infrared and high–resolution natural colour images. Anim. Biodivers. Conserv. 2012, 35, 285–293. [Google Scholar] [CrossRef]
- Chrétien, L.; Théau, J.; Ménard, P. Visible and thermal infrared remote sensing for the detection of white-tailed deer using an unmanned aerial system. Wildl. Soc. Bull. 2016, 40, 181–191. [Google Scholar] [CrossRef]
- Flores-de-Santiago, F.; Valderrama-Landeros, L.; Rodríguez-Sobreyra, R.; Flores-Verdugo, F. Assessing the effect of flight altitude and overlap on orthoimage generation for UAV estimates of coastal wetlands. J. Coast. Conserv. 2020, 24, 35. [Google Scholar] [CrossRef]
- Chrétien, L.; Théau, J.; Ménard, P. Wildlife multispecies remote sensing using visible and thermal infrared imagery acquired from an unmanned aerial vehicle (UAV). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2015. [Google Scholar] [CrossRef] [Green Version]
- Valle, R.; Scarton, F. Drones improve effectiveness and reduce disturbance of censusing Common Redshanks Tringa totanus breeding on salt marshes. Ardea 2020, 107, 275–282. [Google Scholar] [CrossRef]
- Baums, J. Convert Raster Data to a ESRI Polygon Shapefile and (Optionally) a SpatialPolygonsDataFrame GitHub. Available online: https://gist.github.com/johnbaums/26e8091f082f2b3dd279 (accessed on 19 December 2022).
Shape Attributed | Lower Limit | Upper Limit |
---|---|---|
Size (m2) | 0.0111562 | 0.5501689 |
Perimeter (m) | 0.6220029 | 4.8082500 |
Area/Perimeter ratio | 0.0179360 | 0.1476506 |
Shape index | 0.2166254 | 0.6981190 |
Box’s length (m) | 0.2144787 | 1.1876790 |
Box’s wide (m) | 0.1367180 | 0.8679846 |
Box’s Length/Width | 1.0001040 | 3.7119470 |
Intersection area (%) | 30.7244900 | 88.3788400 |
Vertices (n) | 11 | 72 |
Recognizer Objects | ||||
---|---|---|---|---|
Positive | Negative | |||
True swans | Category 0 | True | 16,445 | 445 |
False | 900 | 97,095 | ||
Category 1 | True | 7117 | 93 | |
False | 3228 | 76,161 | ||
Category 2 | True | 25,537 | 952 | |
False | 73,241 | 3,491,641 |
Brightness | |||
---|---|---|---|
Category 0 | Category 1 | Category 2 | |
Precision | 0.948 | 0.687 | 0.033 |
Sensitivity | 0.973 | 0.987 | 0.964 |
Specificity | 0.99 | 0.96 | 0.82 |
Accuracy | 0.988 | 0.962 | 0.827 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Torres, M.; Silva, C.P.; Riquelme, C.; Estay, S.A.; Soto-Gamboa, M. Automatic Recognition of Black-Necked Swan (Cygnus melancoryphus) from Drone Imagery. Drones 2023, 7, 71. https://doi.org/10.3390/drones7020071
Jiménez-Torres M, Silva CP, Riquelme C, Estay SA, Soto-Gamboa M. Automatic Recognition of Black-Necked Swan (Cygnus melancoryphus) from Drone Imagery. Drones. 2023; 7(2):71. https://doi.org/10.3390/drones7020071
Chicago/Turabian StyleJiménez-Torres, Marina, Carmen P. Silva, Carlos Riquelme, Sergio A. Estay, and Mauricio Soto-Gamboa. 2023. "Automatic Recognition of Black-Necked Swan (Cygnus melancoryphus) from Drone Imagery" Drones 7, no. 2: 71. https://doi.org/10.3390/drones7020071
APA StyleJiménez-Torres, M., Silva, C. P., Riquelme, C., Estay, S. A., & Soto-Gamboa, M. (2023). Automatic Recognition of Black-Necked Swan (Cygnus melancoryphus) from Drone Imagery. Drones, 7(2), 71. https://doi.org/10.3390/drones7020071