Architecture of Emergency Communication Systems in Disasters through UAVs in 5G and Beyond
Abstract
:1. Introduction
2. Proposed Architecture
2.1. Cluster Formation
2.1.1. Cluster Membership
2.1.2. Selection of the CH and CHB
2.1.3. Leaving Process
2.1.4. Merging Process
2.2. Safety Messages Transmission
Algorithm 1. Algorithm of SM Broadcast |
1. SM is broadcast by CH 2. Wait for ACK, or, Twait = TSIFS 3. IF NACK ∈ UACK for all CMs 4. Then the transmission is successful 5. End 6. ELSE IF NACK ∉ UACK and ϯre ≤ ϯmax 7. Then CH retransmits to the CM 8. ELSE Discard 9. End |
2.3. Backoff Mechanism
Algorithm 2. Algorithm of the Proposed Backoff Mechanism |
1. IF = i 2. Twait = TDIFS and still = i 3. Broadcast 4. END 5. IF Twait > TDIFS 6. backoffi = [0, ҨC-opt − 1] 7. While backoffi > 0, continue to sense the channel, do 8. IF = i in a slot 9. backoffi = backoffi − 1, 10. ELSE backoffi = backoffi 11. END 12. END 13. While backoffi = 0 do 14. Broadcast 15. END |
3. Performance Analysis
3.1. Network Model
3.2. Outage Analysis
3.3. Throughput Analysis
3.4. PDR Analysis
3.5. Delay Analysis
4. Simulation Results
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.H.; Debbah, M. A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems. IEEE Commun. Surv. Tutor. 2019, 21, 2334–2360. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Gao, H.; Liu, Z.; Huang, F.; Zhang, J.; Li, X.; Ma, J. ICRA: An Intelligent Clustering Routing Approach for UAV Ad Hoc Networks. IEEE Trans. Intell. Transp. Syst. Early Access 2022, 1–14. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, J.; Huang, F.; Cai, D.; Wu, Y.; Chen, X.; Igorevich, K.K. Lightweight Trustworthy Message Exchange in Unmanned Aerial Vehicle Networks. IEEE Trans. Intell. Transp. Syst. 2021, 1–14. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, B.; Zhao, H.; Zhang, J.; Zhou, L.; Ma, D.; Wei, J.; Leung, V.C. Joint Resource Allocation on Slot, Space and Power towards Concurrent Transmissions in UAV Ad Hoc Networks. IEEE Trans. Wirel. Commun. 2022, 21, 8698–8712. [Google Scholar] [CrossRef]
- Erdelj, M.; Natalizio, E. UAV-assisted disaster management: Applications and open issues. In Proceedings of the IEEE International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, USA, 15–18 February 2016; pp. 1–5. [Google Scholar]
- Han, J.; Wei, Z.; Ma, L.; Jiang, W.; Pan, C.; Wang, Y. A Multiple Access Method for Integrated Sensing and Communication Enabled UAV Ad Hoc Network. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 184–188. [Google Scholar]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Yanmaz, E.; Yahyanejad, S.; Rinner, B.; Hellwagner, H.; Bettstetter, C. Drone networks: Communications, coordination, and sensing. Ad Hoc Netw. 2018, 68, 1–15. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things communications. IEEE Trans. Wirel. Commun. 2017, 16, 7574–7589. [Google Scholar] [CrossRef]
- Yaliniz, I.B.; Yanikomeroglu, H. The new frontier in ran heterogeneity: Multi-tier drone-cells. IEEE Commun. Mag. 2016, 54, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Swaminathan, R. Comprehensive Performance Analysis of Hovering UAV-Based FSO Communication System. IEEE Photonics J. 2022, 14, 7352013. [Google Scholar] [CrossRef]
- Swaminathan, R.; Sharma, S.; Vishwakarma, N.A.; Madhukumar, S. HAPS-Based Relaying for Integrated Space–Air–Ground Networks With Hybrid FSO/RF Communication: A Performance Analysis. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1581–1599. [Google Scholar]
- Shah, S.; Siddharth, M.; Vishwakarma, N.; Swaminathan, R.; Madhukumar, A.S. Adaptive-Combining-Based Hybrid FSO/RF Satellite Communication With and Without HAPS. IEEE Access 2021, 9, 81492–81511. [Google Scholar] [CrossRef]
- Dabiri, M.T.; Sadough, S.M.S.; Khalighi, M.A. Channel Modeling and Parameter Optimization for Hovering UAV-Based Free-Space Optical Links. IEEE J. Sel. Areas Commun. 2018, 36, 2104–2113. [Google Scholar] [CrossRef] [Green Version]
- Dabiri, M.T.; Sadough, S.M.S.; Ansari, I.S. Tractable Optical Channel Modeling Between UAVs. IEEE Trans. Veh. Technol. 2019, 68, 11543–11550. [Google Scholar] [CrossRef]
- Dabiri, M.T.; Rezaee, M.; Ansari, I.S.; Yazdanian, V. Channel Modeling for UAV-Based Optical Wireless Links With Nonzero Boresight Pointing Errors. IEEE Trans. Veh. Technol. 2020, 69, 14238–14246. [Google Scholar] [CrossRef]
- Shah, A.F.M.S.; Karabulut, M.A. Reliability estimation for drone communications by using an MLP-based model. Int. Adv. Res. Eng. J. 2022, 6, 5170. [Google Scholar] [CrossRef]
- Shah, A.F.M.S. A Survey from 1G to 5G Including the Advent of 6G: Architectures, Multiple Access Techniques, and Emerging Technologies. In Proceedings of the IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 26–29 January 2022; pp. 1117–1123. [Google Scholar]
- Zhao, N.; Lu, W.; Sheng, M.; Chen, Y.; Tang, J.; Yu, F.R.; Wong, K.K. UAV-Assisted Emergency Networks in Disasters. IEEE Wirel. Commun. 2019, 26, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.H.; Nam, J.C.; Mahmud, I.; Cho, Y.Z. Multi-drone control and network self-recovery for flying ad hoc networks. In Proceedings of the IEEE Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria, 5–8 July 2016; pp. 148–150. [Google Scholar]
- Gupta, L.; Jain, R.; Vaszkun, G. Survey of Important Issues in UAV Communication Networks. IEEE Commun. Surv. Tutor. 2016, 18, 1123–1152. [Google Scholar] [CrossRef] [Green Version]
- Bekmezci, I.; Sahingoz, O.K.; Temel, S. Flying ad-hoc networks (FANETs): A survey. Ad Hoc Netw. 2013, 11, 1254–1270. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Han, Z.; Ren, Y.; Maunder, R.G.; Hanzo, L. Taking Drones to the Next Level: Cooperative Distributed Unmanned-Aerial-Vehicular Networks for Small and Mini Drones. IEEE Veh. Technol. Mag. 2017, 12, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Jawhar, I.; Mohamed, N.; Al-Jaroodi, J.; Agrawal, D.P.; Zhang, S. Communication and networking of UAV-based systems: Classification and associated architectures. J. Netw. Comput. Appl. 2017, 84, 93–108. [Google Scholar] [CrossRef]
- Shah, A.F.M.S.; Ilhan, H.; Tureli, U. CB-MAC: A novel cluster-based MAC protocol for VANETs. IET Intell. Transp. Syst. 2019, 13, 587–595. [Google Scholar] [CrossRef]
- Yang, G.; Lin, X.; Li, Y.; Cui, H.; Xu, M.; Wu, D.; Rydén, H.; Redhwan, S.B. A telecom perspective on the Internet of drones: From LTE-advanced to 5G. arXiv 2018, arXiv:1803.11048. [Google Scholar]
- Shah, A.F.M.S.; Ilhan, H.; Tureli, U. Designing and Analysis of IEEE 802.11 MAC for UAVs Ad Hoc Networks. In Proceedings of the IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–12 October 2019; pp. 934–939. [Google Scholar]
- Bhandari, S.; Wang, X.; Lee, R. Mobility and Location-Aware Stable Clustering Scheme for UAV Networks. IEEE Access 2020, 8, 106364–106372. [Google Scholar] [CrossRef]
- Pandey, A.P.; Shukla, K.; Agrawal, R. Salp Swarm Optimization-Based Clustering Algorithm (SSOCA) in Adaptive FANET to Improve QoS for Disaster Response Operations. Wirel. Pers. Commun. 2022, 126, 2801–2824. [Google Scholar] [CrossRef]
- Shah, A.F.M.S.; Ilhan, H.; Tureli, U. qCB-MAC: QoS aware cluster-based MAC protocol for VANETs. In Advances in Intelligent Systems and Computing; Arai, K., Kapoor, S., Bhatia, R., Eds.; Springer: Cham, Switzerland, 2019; Volume 857, pp. 685–695. [Google Scholar]
- IEEE Standard for Information Technology. Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks--Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. In IEEE Standard 802.11-2020 (Revision of IEEE Standard 802.11-2016); IEEE: Piscataway, NJ, USA, 2021; pp. 1–4379. Available online: https://ieeexplore.ieee.org/document/817038 (accessed on 30 November 2022).
- Syed, I.; Roh, B.H. Adaptive backoff algorithm for contention window for dense IEEE 802.11 WLANs. Mob. Inf. Syst. 2016, 2016, 8967281. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.K.; Alouini, M.S. Digital Communication over Fading Channels, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2015; pp. 253–257. [Google Scholar]
- Karabulut, M.A.; Shah, A.F.M.S.; Ilhan, H. A Novel MIMO-OFDM Based MAC Protocol for VANETs. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20255–20267. [Google Scholar] [CrossRef]
Abbreviation | Meaning | Abbreviation | Meaning |
---|---|---|---|
ATJC | Acceptance To Join in the Cluster | NM | number of CMs |
AWGN | additive white Gaussian noise | NSM | non-safety messages |
CH | cluster head | probability density function | |
CHB | backup cluster head | PDR | packet dropping rate |
CI | cluster information | PHY | physical |
CID | cluster ID | RTBCH | Request To a Backup Cluster Head |
CM | cluster member | RTJC | Request To Join in the Cluster |
ECV | emergency communication vehicle | RTM | Request To Merge |
FANET | flying ad hoc network | SIFS | short inter-frame space |
GPS | global positioning system | SM | safety message |
HA | cluster head address | SNR | signal-to-noise ratio |
MAC | medium access control | UAV | unmanned aerial vehicle |
MID | cluster member ID | WLAN | wireless local area network |
Parameters | Value |
---|---|
Transmission range | 300 m |
, , , () | 10, 20, 50, 1 |
Lh, L, ACK (bytes) | 50, 300, 14 |
Rd (Mbps) | 11 |
ϯmax, ҨC-min, | 7, 64, 1, 1 |
NUAV | 2–50 |
UAV speed | 10–30 m/s |
h | 50 m |
(dB) | 10, −50, 5 |
f (GHz), | 5, 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, A.F.M.S. Architecture of Emergency Communication Systems in Disasters through UAVs in 5G and Beyond. Drones 2023, 7, 25. https://doi.org/10.3390/drones7010025
Shah AFMS. Architecture of Emergency Communication Systems in Disasters through UAVs in 5G and Beyond. Drones. 2023; 7(1):25. https://doi.org/10.3390/drones7010025
Chicago/Turabian StyleShah, A. F. M. Shahen. 2023. "Architecture of Emergency Communication Systems in Disasters through UAVs in 5G and Beyond" Drones 7, no. 1: 25. https://doi.org/10.3390/drones7010025
APA StyleShah, A. F. M. S. (2023). Architecture of Emergency Communication Systems in Disasters through UAVs in 5G and Beyond. Drones, 7(1), 25. https://doi.org/10.3390/drones7010025