Obstacle Avoidance-Based Autonomous Navigation of a Quadrotor System
Abstract
:1. Introduction
- Perception: This step determines the current state of the quadrotor (in terms of position and orientation) and the state of the surrounding environment (in terms of obstacle and target positions). The Global Positioning System (GPS) sensor and Inertial Measurement Unit (IMU) are primarily used to determine the state of the quadrotor system. In contrast, external sensors such as ultrasonic, LiDAR and vision cameras are used to determine the state and representation of the surrounding environment. Algorithms for object detection, object tracking, localization, and simultaneous localization and mapping are mainly developed for perception.
- Planning: This step uses the information obtained in the perception stage for decision making. Route planning and path planning algorithms are developed in this step.
- Control: This step controls the quadrotor movements and actions to ensure that it follows the path generated in the planning stage. Algorithms such as path following, obstacle avoidance, path tracking, and stability control are developed in this step.
2. Background
2.1. Quadrotor Model
2.1.1. Control Input
2.1.2. Quadrotor Equation of Motion
2.2. PID Control
3. Methodology
3.1. Desired Trajectory
3.2. The Quadrotor Model
3.3. Controller Design
3.4. Controller Tuning
3.5. Trajectory Tracking
3.6. Obstacle Avoidance Model
Algorithm 1: Navigational Controller | ||||
Input: desired altitude, initial position, and goal position | ||||
Output: actual altitude and attitude. | ||||
1 | Initialize the distance threshold; | |||
2 | while the goal location is not reached, do | |||
3 | If then | |||
4 | Compute the desired yaw angle; | |||
5 | Else | |||
6 | Execute the obstacle avoidance algorithm to obtain the best coordinate; | |||
7 | Compute the desired yaw angle; | |||
8 | end if | |||
9 | Update the position of the quadrotor to move towards the goal position; | |||
10 | end while | |||
11 | Output the actual altitude and attitude |
Algorithm 2: Obstacle avoidance algorithm | ||||
Input: current state of the quadrotor, goal state, and distance to the obstacle | ||||
Output: generate best solution | ||||
1 | Initialize the algorithm simulation parameters | |||
2 | Initialize the bat population and calculate fitness; | |||
3 | Select the best individual as elite individual from the initial solution | |||
4 | Update the boundaries and generate the opposite solution | |||
5 | Select the fittest solution as a candidate for the next generation | |||
6 | while do | |||
7 | Generate new solutions by adjusting frequency and updating velocity; | |||
8 | if then | |||
9 | Select a solution among the best solutions & generate local solutions around it; | |||
10 | end if | |||
11 | Generate a new solution by flying randomly and evaluates fitness | |||
12 | if then | |||
13 | Accept the new solution and update and | |||
14 | end if | |||
15 | Rank the bats and obtain the best solution | |||
16 | end while | |||
17 | Output best solution |
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alanezi, M.A.; Shahriar, M.S.; Hasan, M.B.; Ahmed, S.; Sha’aban, Y.A.; Bouchekara, H.R.E.H. Livestock Management with Unmanned Aerial Vehicles: A Review. IEEE Access 2022, 10, 45001–45028. [Google Scholar] [CrossRef]
- Rivas, A.; Chamoso, P.; González-Briones, A.; Corchado, J.M. Detection of Cattle Using Drones and Convolutional Neural Networks. Sensors 2018, 18, 2048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarwar, F.; Griffin, A.; Periasamy, P.; Portas, K.; Law, J. Detecting and Counting Sheep with a Convolutional Neural Network. In Proceedings of the 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Auckland, New Zealand, 11 November 2018; pp. 1–6. [Google Scholar]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, T.T.; Santos, P.M. A Study on the Detection of Cattle in UAV Images Using Deep Learning. Sensors 2019, 19, 5436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Thani, N.; Albuainain, A.; Alnaimi, F.; Zorba, N. Drones for Sheep Livestock Monitoring. In Proceedings of the 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 16–18 June 2020; pp. 672–676. [Google Scholar] [CrossRef]
- Barbedo, J.G.A.; Koenigkan, L.V.; Santos, P.M.; Ribeiro, A.R.B. Counting Cattle in UAV Images—Dealing with Clustered Animals and Animal/Background Contrast Changes. Sensors 2020, 20, 2126. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Chen, G.; Tait, A.; Schneider, D. Automated Cattle Counting Using Mask R-CNN in Quadcopter Vision System. Comput. Electron. Agric. 2020, 171, 105300. [Google Scholar] [CrossRef]
- Alanezi, M.A.; Sadiq, B.O.; Sha, Y.A.; Bouchekara, H.R.E.H. Livestock Management on Grazing Field: A FANET Based Approach. Appl. Sci. 2022, 12, 6654. [Google Scholar] [CrossRef]
- Alanezi, M.A.; Salami, A.F.; Sha’aban, Y.A.; Bouchekara, H.R.E.H.; Shahriar, M.S.; Khodja, M.; Smail, M.K. UBER: UAV-Based Energy-Efficient Reconfigurable Routing Scheme for Smart Wireless Livestock Sensor Network. Sensors 2022, 22, 6158. [Google Scholar] [CrossRef]
- Khairuddin, I.M.; Majeed, A.P.P.A.; Lim, A.; Mat Jizat, J.A.; Jaafar, A.A. Modelling and PID Control of a Quadrotor Aerial Robot. Adv. Mater. Res. 2014, 903, 327–331. [Google Scholar] [CrossRef]
- Abdelmaksoud, S.I.; Mailah, M.; Abdallah, A.M. Control Strategies and Novel Techniques for Autonomous Rotorcraft Unmanned Aerial Vehicles: A Review. IEEE Access 2020, 8, 195142–195169. [Google Scholar] [CrossRef]
- Idrissi, M.; Salami, M.; Annaz, F. A Review of Quadrotor Unmanned Aerial Vehicles: Applications, Architectural Design and Control Algorithms. J. Intell. Robot. Syst. 2022, 104, 22. [Google Scholar] [CrossRef]
- Idrissi, M.; Annaz, F.; Salami, M. Mathematical & Physical Modelling of a Quadrotor UAV. In Proceedings of the 2021 7th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 23–26 April 2021; pp. 206–212. [Google Scholar]
- Sha’aban, Y.A. Model Predictive Control from Routine Plant Data. IFAC J. Syst. Control 2019, 8, 100050. [Google Scholar] [CrossRef]
- Sha’aban, Y.A.; Tahir, F.; Masding, P.W.; Mack, J.; Lennox, B. Control Improvement Using MPC: A Case Study of PH Control for Brine Dechlorination. IEEE Access 2018, 6, 13418–13428. [Google Scholar] [CrossRef]
- Sha’aban, Y.A. Automatic Tuning of MPC Using Genetic Algorithm with Historic Process Data. In Proceedings of the 2022 IEEE 18th International Colloquium on Signal Processing & Applications (CSPA), Kuala Lumpur, Malaysia, 12 May 2022; pp. 329–334. [Google Scholar]
- Nazaruddin, Y.Y.; Andrini, A.D.; Anditio, B. PSO Based PID Controller for Quadrotor with Virtual Sensor. IFAC-PapersOnLine 2018, 51, 358–363. [Google Scholar] [CrossRef]
- Salamat, B.; Tonello, A.M. Adaptive Nonlinear PID Control for a Quadrotor UAV Using Particle Swarm Optimization. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–12. [Google Scholar]
- Huang, T.; Huang, D.; Luo, D. Attitude Tracking for a Quadrotor UAV Based on Fuzzy PID Controller. In Proceedings of the 2018 5th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), IEEE, Hangzhou, China, 16–19 August 2018; pp. 1–6. [Google Scholar]
- Housny, H.; El Fadil, H. Fuzzy PID Control Tuning Design Using Particle Swarm Optimization Algorithm for a Quadrotor. In Proceedings of the 2019 5th International Conference on Optimization and Applications (ICOA), Kenitra, Morocco, 25–26 April 2019; pp. 1–6. [Google Scholar]
- Gómez-Avila, J.; López-Franco, C.; Alanis, A.Y.; Arana-Daniel, N. Control of Quadrotor Using a Neural Network Based PID. In Proceedings of the 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Guadalajara, Mexico, 7–9 November 2018; pp. 1–6. [Google Scholar]
- Bari, S.; Hamdani, S.S.Z.; Khan, H.U.; ur Rehman, M.; Khan, H. Artificial Neural Network Based Self-Tuned PID Controller for Flight Control of Quadcopter. In Proceedings of the 2019 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, 21–22 February 2019; pp. 1–5. [Google Scholar]
- Jabeur, C.B.; Seddik, H. Optimized Neural Networks-PID Controller with Wind Rejection Strategy for a Quad-Rotor. J. Robot. Control 2022, 3, 62–72. [Google Scholar] [CrossRef]
- Altan, A. Performance of Metaheuristic Optimization Algorithms Based on Swarm Intelligence in Attitude and Altitude Control of Unmanned Aerial Vehicle for Path Following. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; pp. 1–6. [Google Scholar]
- Zatout, M.S.; Rezoug, A.; Rezoug, A.; Baizid, K.; Iqbal, J. Optimisation of Fuzzy Logic Quadrotor Attitude Controller–Particle Swarm, Cuckoo Search and BAT Algorithms. Int. J. Syst. Sci. 2022, 53, 883–908. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Mirjalili, S. Genetic Algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Berlin/Heidelberg, Germany, 2019; pp. 43–55. [Google Scholar]
- Yasin, J.N.; Mohamed, S.A.S.; Haghbayan, M.-H.; Heikkonen, J.; Tenhunen, H.; Plosila, J. Unmanned Aerial Vehicles (UAVs): Collision Avoidance Systems and Approaches. IEEE Access 2020, 8, 105139–105155. [Google Scholar] [CrossRef]
- Huang, S.; Teo, R.S.H.; Tan, K.K. Collision Avoidance of Multi Unmanned Aerial Vehicles: A Review. Annu. Rev. Control 2019, 48, 147–164. [Google Scholar] [CrossRef]
- Aldao, E.; González-deSantos, L.M.; Michinel, H.; González-Jorge, H. UAV Obstacle Avoidance Algorithm to Navigate in Dynamic Building Environments. Drones 2022, 6, 16. [Google Scholar] [CrossRef]
- Bassolillo, S.R.; D’Amato, E.; Notaro, I.; Ariante, G.; Del Core, G.; Mattei, M. Enhanced Attitude and Altitude Estimation for Indoor Autonomous UAVs. Drones 2022, 6, 18. [Google Scholar] [CrossRef]
- Moshayedi, A.J.; Gheibollahi, M.; Liao, L. The Quadrotor Dynamic Modeling and Study of Meta-Heuristic Algorithms Performance on Optimization of PID Controller Index to Control Angles and Tracking the Route. IAES Int. J. Robot. Autom. 2020, 9, 256. [Google Scholar] [CrossRef]
- Haruna, Z.; Mu’azu, M.B.; Abubilal, K.A.; Tijani, S.A. Development of a Modified Bat Algorithm Using Elite Opposition—Based Learning. In Proceedings of the 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON), Futo, Nigeria, 7–10 November 2017; pp. 144–151. [Google Scholar]
S/N | Parameter | Symbol | Value | Units |
---|---|---|---|---|
1 | Thrust factor | b | 6.317 × 10−4 | |
2 | Drag factor | d | 1.61 × 10−4 | |
3 | Gravity force | g | 9.81 | m/s2 |
4 | Inertia around x-axis | Ix | 1.453 × 10−2 | Kgm2 |
5 | Inertia around y-axis | Iy | 1.453 × 10−2 | Kgm2 |
6 | Inertia around z-axis | Iz | 2.884 × 10−2 | Kgm2 |
7 | Motors’ moment of inertia | Jr | 2.82 × 10−7 | |
8 | Length from the rotor to the center of mass | l | 0.225 | m |
9 | Quadrotor mass | m | 1.888 | Kg |
S/N | Parameter | Type/Value |
---|---|---|
1 | Population Size | 50 |
2 | Number of Variables | 3 |
3 | Maximum Generations | 3000 |
4 | Initialization | Uniform |
5 | Selection | Tournament |
6 | Crossover | Adaptive Feasible |
7 | Mutation | Arithmetic |
S/N | Parameters | Values |
---|---|---|
1 | Azimuth Resolution | 0.5 |
2 | Elevation Resolution | 2 |
3 | Azimuth Limits | (−179 179) |
4 | Elevation Limits | (−15 15) |
5 | Maximum Range | 7 m |
6 | Mounting Location | (0, 0, −0.4) |
7 | Mounting Angle | (0, 0, 180) |
S/N | Parameters | Symbol | Value |
---|---|---|---|
1 | Frequency Range | F | 0–2 |
2 | Initial Velocity of Bats | V | 0 |
3 | Loudness | A | 0.25 |
4 | Maximum Iteration | MaxIter | 100 |
5 | Population Size | N | 25 |
6 | Pulse Emission Rate | R | 0.5 |
7 | Search Dimension | D | 2 |
Controller Parameters | ITAE | ISE | ||
---|---|---|---|---|
Altitude Controller | Attitude Controller | Altitude Controller | Attitude Controller | |
Kp | 5.0000 | 9.9995 | 12.8750 | 9.9995 |
Ki | 2.5728 | 6.4267E-5 | 6.6843 | 0.0254 |
Kd | 3.6485 | 1.0915 | 4.5464 | 0.7545 |
Transient Parameters | ITAE | ISE | ||
---|---|---|---|---|
Altitude Controller | Attitude Controller | Altitude Controller | Attitude Controller | |
Overshoot (%) | 2.6533 | 2.5028 | 14.2967 | 12.9697 |
Settling Time (s) | 6.5088 | 0.4271 | 3.7947 | 0.4515 |
Rise Time (s) | 2.0118 | 0.1850 | 0.7343 | 0.1440 |
Tracking Error | 0.0011 | 2.343E-7 | 0.0021 | 5.657E-5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanezi, M.A.; Haruna, Z.; Sha’aban, Y.A.; Bouchekara, H.R.E.H.; Nahas, M.; Shahriar, M.S. Obstacle Avoidance-Based Autonomous Navigation of a Quadrotor System. Drones 2022, 6, 288. https://doi.org/10.3390/drones6100288
Alanezi MA, Haruna Z, Sha’aban YA, Bouchekara HREH, Nahas M, Shahriar MS. Obstacle Avoidance-Based Autonomous Navigation of a Quadrotor System. Drones. 2022; 6(10):288. https://doi.org/10.3390/drones6100288
Chicago/Turabian StyleAlanezi, Mohammed A., Zaharuddeen Haruna, Yusuf A. Sha’aban, Houssem R. E. H. Bouchekara, Mouaaz Nahas, and Mohammad S. Shahriar. 2022. "Obstacle Avoidance-Based Autonomous Navigation of a Quadrotor System" Drones 6, no. 10: 288. https://doi.org/10.3390/drones6100288
APA StyleAlanezi, M. A., Haruna, Z., Sha’aban, Y. A., Bouchekara, H. R. E. H., Nahas, M., & Shahriar, M. S. (2022). Obstacle Avoidance-Based Autonomous Navigation of a Quadrotor System. Drones, 6(10), 288. https://doi.org/10.3390/drones6100288