A Hybrid Communication Scheme for Efficient and Low-Cost Deployment of Future Flying Ad-Hoc Network (FANET)
Abstract
:1. Introduction
2. Networking Architectures
2.1. UAV Ad-Hoc Network
2.2. Multi-Group UAV Ad-Hoc Network
2.3. Multi-Layer UAV Ad-Hoc Network
3. Wireless Communication Technologies
3.1. Short-Range Communication Technologies
3.1.1. Wi-Fi (IEEE 802.11)
3.1.2. Bluetooth (IEEE 802.15.1)
3.1.3. ZigBee (IEEE 802.15.4)
3.2. Long-Range Communication Technologies
3.2.1. WiMAX (IEEE 802.16)
3.2.2. Long-Term Evolution (LTE)
3.2.3. Fifth Generation (5G)
3.2.4. Satellite Communication (SATCOM)
4. Resource Management and Energy Efficiency
5. The Proposed Hybrid Scheme
5.1. UAV Station Model
5.2. Mobility Model
5.3. Propagation Model
5.4. Application Scenarios and Architecture
6. Simulation Setup and Performance Metrics
6.1. Simulation Setup
6.2. Performance Metrics
6.2.1. Throughput (bits/s)
6.2.2. Delay (s)
7. Results and Analysis
8. Conclusions and Future Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zeng, Y.; Zhang, R.; Teng, J.L. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
- Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [Google Scholar] [CrossRef]
- Sahingoz, O.K. Networking models in flying Ad-hoc networks (FANETs): Concepts and challenges. J. Intell. Robot. Syst. 2014, 74, 513–527. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, R. Cooperative frameworks and network models for flying ad hoc networks: A survey. Concurr. Comput. Pract. Exp. 2017, 29, e3931. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Lamont, L. Communication architectures and protocols for networking unmanned aerial vehicles. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 1415–1420. [Google Scholar]
- Khan, M.A.; Qureshi, I.M.; Safi, A.; Khan, I.U. Flying Ad-Hoc Networks (FANETs): A Review of Communication architectures, and Routing protocols. In Proceedings of the 2017 First International Conference on Latest Trends in Electrical Engineering and Computing Technologies (INTELLECT), Karachi, Pakistan, 15–16 November 2017; pp. 692–699. [Google Scholar]
- Joh, H.; Yang, I.; Ryoo, I. The internet of everything based on energy efficient P2P transmission technology with Bluetooth low energy. Peer-to-Peer Netw. Appl. 2015, 9, 520–528. [Google Scholar] [CrossRef]
- Cheng, C.-M.; Hsiao, P.-H.; Kung, H.T.; Vlah, D. Performance measurement of 802.11a wireless links from UAV to ground nodes with various antenna orientations. In Proceedings of the 15th International Conference on Computer Communications and Networks, Arlington, VA, USA, 9–11 October 2006; pp. 303–308. [Google Scholar]
- Bluetooth Core Specification, Bluetooth Special Interest Group (SIG). 2016. Available online: https://www.bluetooth.com/specifications/bluetooth-core-specification (accessed on 6 October 2018).
- Khan, M.A.; Khan, I.U.; Qureshi, I.M.; Alam, M.K.; Shah, S.B.; Shafiq, M. Deployment of reliable, simple, and cost-effective medium access control protocols for multi-layer flying ad-hoc networks. In Proceedings of the 2nd International Conference on Future Networks and Distributed Systems (ICFNDS ’18), Amman, Jordan, 26–27 June 2018; p. 49. [Google Scholar]
- Afonso, J.A.; Coelho, E.T.; Carvalhal, P.; Ferreira, M.J.; Santos, C.; Silva, L.F.; Almeida, H. Distributed sensing and actuation over Bluetooth for unmanned air vehicles. In Proceedings of the International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006. [Google Scholar]
- Hoffmann, G.; Rajnarayan, D.G.; Waslander, S.L.; Dostal, D.; Jang, J.S.; Tomlin, C.J. The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC). In Proceedings of the 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576), Salt Lake City, UT, USA, 28 October 2004. [Google Scholar]
- Yut, L.; Fei, Q.; Geng, Q. Combining Zigbee and inertial sensors for quadrotor UAV indoor localization. In Proceedings of the 2013 10th IEEE International Conference on Control and Automation (ICCA), Hangzhou, China, 12–14 June 2013; pp. 1912–1916. [Google Scholar]
- Jiang, Y.; Cao, J.; Du, Y. Unmanned air vehicle landing based on Zigbee and vision guidance. In Proceedings of the 2006 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; pp. 10310–10314. [Google Scholar]
- Zafar, W.; Khan, B.M. A reliable, delay bounded and less complex communication protocol for multicluster FANETs. Digit. Commun. Netw. 2017, 3, 30–38. [Google Scholar] [CrossRef]
- Banerji, S.; Chowdhury, R.S. Wi-Fi & WiMAX: A comparative study. Indian J. Eng. 2013, arXiv:1302.22472. [Google Scholar]
- Rahman, M.A. Enabling drone communications with WiMAX Technology. In Proceedings of the IISA 2014, The 5th International Conference on Information, Intelligence, Systems and Applications, Chania, Greece, 7–9 July 2014; pp. 323–328. [Google Scholar]
- Dalmasso, I.; Galletti, I.; Giuliano, R.; Mazzenga, F. WiMAX networks for emergency management based on UAVs. In Proceedings of the 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL), Rome, Italy, 2–5 October 2012; pp. 1–6. [Google Scholar]
- Lin, X.; Yajnanarayana, V.; Muruganathan, S.; Gao, S.; Asplund, H.; Maattanen, H.; Bergstrom, M.; Euler, S.; Wang, Y. The Sky Is Not the Limit: LTE for Unmanned Aerial Vehicles. IEEE Commun. Mag. 2018, 56, 204–221. [Google Scholar] [CrossRef]
- Qazi, S.; Siddiqui, A.S.; Wagan, A.I. UAV based real time video surveillance over 4G LTE. In Proceedings of the 2015 International Conference on Open Source Systems & Technologies (ICOSST), Lahore, Pakistan, 17–19 December 2015; pp. 141–145. [Google Scholar]
- Van der Bergh, B.; Chiumento, A.; Pollin, S. LTE in the sky: Trading off propagation benefits with interference costs for aerial nodes. IEEE Commun. Mag. 2016, 54, 44–50. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Amorim, R.; Wigard, J.; Kovács, I.Z.; Sørensen, T.B.; Mogensen, P.E. How to Ensure Reliable Connectivity for Aerial Vehicles Over Cellular Networks. IEEE Access 2018, 6, 12304–12317. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, G. An Overview of 5G Requirements—5G Mobile Communications; Springer: Cham, Switzerland, 2017; pp. 3–26. [Google Scholar] [CrossRef]
- Bor-Yaliniz, I.; Yanikomeroglu, H. The new frontier in ran heterogeneity: Multi-tier drone-cells. IEEE Commun. Mag. 2016, 54, 48–55. [Google Scholar] [CrossRef]
- Dong, Y.; Hassan, M.; Cheng, J.; Hossain, M.; Leung, V. An edge computing empowered radio access network with uav-mounted fso fronthaul and backhaul: Key challenges and approaches. arXiv, 2018; arXiv:1803.06381. [Google Scholar] [CrossRef]
- Sharma, V.; Song, F.; You, I.; Chao, H.-C. Efficient management and fast handovers in software defined wireless networks using uavs. IEEE Netw. 2017, 31, 78–85. [Google Scholar] [CrossRef]
- Huo, Y.; Dong, X.; Lu, T.; Xu, W.; Yuen, M. Distributed and multilayer UAV network for the next-generation wireless communication. arXiv, 2018; arXiv:1805.01534. [Google Scholar]
- Li, B.; Fei, Z.; Zhang, Y. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet Things J. 2018, in press. [Google Scholar] [CrossRef]
- Amorosi, L.; Chiaraviglio, L.; D’Andreagiovanni, F.; Blefari-Melazzi, N. Energy-efficient mission planning of UAVs for 5G coverage in rural zones. In Proceedings of the 2018 IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 12–14 March 2018; pp. 1–9. [Google Scholar]
- Ma, D.; Yang, S. UAV image transmission system based on satellite relay. In Proceedings of the ICMMT 4th International Conference on, Proceedings Microwave and Millimeter Wave Technology, Nanjing, China, 18–21 August 2004; pp. 874–878. [Google Scholar]
- Skinnemoen, H. UAV & satellite communications live mission critical visual data. In Proceedings of the 2014 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, Yogyakarta, Indonesia, 13–14 November 2014; pp. 12–19. [Google Scholar]
- Naqvi, S.A.R.; Hassan, S.A.; Pervaiz, H.; Ni, Q. Drone-Aided Communication as a Key Enabler for 5G and Resilient Public Safety Networks. IEEE Commun. Mag. 2018, 56, 36–42. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wirel. Commun. 2017, 16, 3747–3760. [Google Scholar] [CrossRef]
- Tran, T.X.; Hajisami, A.; Pompili, D. Cooperative Hierarchical Caching in 5G Cloud Radio Access Networks. IEEE Netw. 2017, 31, 35–41. [Google Scholar] [CrossRef]
- Zorbas, D.; Razafindralambo, T.; Guerriero, F. Energy efficient mobile target tracking using flying drones. Procedia Comput. Sci. 2013, 19, 80–87. [Google Scholar] [CrossRef]
- Sharma, V.; You, I.; Pau, G.; Collotta, M.; Lim, J.D.; Kim, J.N. LoRaWAN-Based Energy-Efficient Surveillance by Drones for Intelligent Transportation Systems. Energies 2018, 11, 573. [Google Scholar] [CrossRef]
- Sharma, V.; You, I.; Kumar, R. Energy efficient data dissemination in multi-UAV coordinated wireless sensor networks. Mob. Inf. Syst. 2016, 2016, 8475820. [Google Scholar] [CrossRef]
- Sikeridis, D.; Tsiropous, E.E.; Devetsikiotis, M.; Papavassiliou, S. Self-Adaptive Energy Efficient Operation in UAV-Assisted Public Safety Networks. In Proceedings of the 19th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2018), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [Google Scholar]
- Anton, S.R.; Inman, D.J. Performance modeling of unmanned aerial vehicles with on-board energy harvesting. In Active and Passive Smart Structures and Integrated Systems; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; Volume 7977. [Google Scholar]
- Lyu, J.; Zeng, Y.; Zhang, R. Cyclical multiple access in UAV aided communications: A throughput-delay tradeoff. arXiv, 2016; arXiv:1608.03180. [Google Scholar]
- Sharawi, M.S.; Aloi, D.N.; Rawashdeh, O. Design and implementation of embedded printed antenna arrays in small UAV wing structures. IEEE Trans. Antennas Propag. 2010, 58, 2531–2538. [Google Scholar] [CrossRef]
- Ceran, E.T.; Erkilic, T.; Uysal-Biyikoglu, E.; Girici, T.; Leblebicioglu, K. Optimal energy allocation policies for a high altitude flying wireless access point. Trans. Emerg. Telecommun. Technol. 2017, 28, e3034. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Wireless Communication using Unmanned Aerial Vehicles (UAVs): Optimal Transport Theory for Hover Time Optimization. IEEE Trans. Wirel. Commun. 2017, 16, 8052–8066. [Google Scholar] [CrossRef]
- Chen, M.; Saad, W.; Yin, C. Liquid state machine learning for resource allocation in a network of cache-enabled LTE-U UAVs. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Bujari, A.; Calafate, C.T.; Cano, J.C.; Manzoni, P.; Palazzi, C.E.; Ronzani, D. Flying ad-hoc network application scenarios and mobility models. Int. J. Distrib. Sens. Netw. 2017, 13, 1–17. [Google Scholar] [CrossRef]
- Hong, X.; Gerla, M.; Pei, G.; Chiang, C.-C. A group mobility model for ad hoc wireless networks. In Proceedings of the 2nd ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Seattle, WA, USA, 20 August 1999; pp. 53–60. [Google Scholar]
- Guillen-Perez, A.; Cano, M.D. Flying Ad Hoc Networks: A New Domain for Network Communications. Sensors 2018, 18, 3571. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Choi, S.; Park, H.S.; Kwon, W.H. Lecture notes in computer science: Packet error rate analysis of IEEE 802.15.4 under IEEE 802.11b interference. In Proceedings of the 3rd International Conference on Wired/Wireless Internet Communications (WWIC ’05), Malaga, Spain, 11–13 May 2005; pp. 279–288. [Google Scholar]
- Mylin, A.K. A Communication Link Reliability Study for Small Unmanned Aerial Vehicles. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2007. [Google Scholar]
Communication Technology | IEEE Standard | Frequency/Medium | Spectrum Type | Device Mobility | Theoretical Data Rate | Range Indoor-Outdoor | Network Typology | Latency | Advantages | Limitations |
---|---|---|---|---|---|---|---|---|---|---|
Wi-Fi [7,8] | 802.11 | 2.4 GHz IR | Unlicensed | Yes | Up to 2 Mbps | 20 m–100 m | Ad-hoc, star, mesh, hybrid | <5 ms | High speed and cheap | Limited range |
802.11a | 5 GHz | Unlicensed | Yes | Up to 54 Mbps | 35 m–120 m | Ad-hoc, star, mesh, hybrid | ||||
802.11b | 2.4 GHz | Unlicensed | Yes | Up to 11 Mbps | 35 m–140 m | Ad-hoc, star, mesh, hybrid | ||||
802.11n | 2.4/5 GHz | Unlicensed | Yes | Up to 600 Mbps | 70 m–250 m | Ad-hoc, star, mesh, hybrid | ||||
802.11g | 2.4 GHz | Unlicensed | Yes | Up to 54 Mbps | 38 m–140 m | Ad-hoc, star, mesh, hybrid | ||||
802.11ac | 5 GHz | Unlicensed | Yes | Up to 3466 Mbps | 35 m–120 m | Ad-hoc, star, mesh, hybrid | ||||
Bluetooth 5 [9,10,11,12] | 802.15.1 | 2.4 GHz | Unlicensed | Yes | Up to 2 Mbps | 40 m–200 m | Ad-hoc, piconet | 3 ms | Energy-efficient | Low data rate |
ZigBee [13,14,15] | 802.15.4 | 2.4 GHz | Unlicensed | Yes | 250 Kbps | 10 m–100 m | Ad-hoc, star, mesh, tree, cluster | 15 ms | Low cost | Low data rate |
WiMAX [16,17,18] | 802.16a | 2 to 11 GHz | Licensed | Yes | Up to 75 Mbps | Up to 48 km | Wide-area wireless backhaul | 30 ms | High throughput | Interference issues |
LTE [19,20,21,22] | LTE | Up to 20 MHz | Licensed | Yes | Up to 300 Mbps | Up to 100 km | Flat, IP based | 5 ms | High bandwidth | Expensive |
5G [23,24,25,26,27,28,29] | 5G (eMBB) | 28 GHz | Licensed | Yes | Up to 20 Gbps | Wide Area | IP based | 1 ms | High data rate | Expensive |
Satellite [30,31] | Satellite | Up to 40 GHz | Licensed | Yes | Up to 1 Gbps | World Wide | - | 550 ms | Wide coverage | High delay and high cost |
Parameter | Value |
---|---|
Area Dimensions | 1 km × 1 km |
Altitude of UAVs | 25 m |
Number of UAVs | 42 |
Directional Gain | 10 dBi |
Frequency | 2.4 GHz |
Data Rates | 2 Mbps, 11 Mbps |
Packet Interval (s) | Exponential (1) |
Packet Size(byte) | 1024 |
Simulation Time | 1600 s |
Node Type | Mobile |
Mobility Model | RPGM, RWP |
Speed of UAVs | 15 m/s |
Transmission Power | −97 dBm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.A.; Qureshi, I.M.; Khanzada, F. A Hybrid Communication Scheme for Efficient and Low-Cost Deployment of Future Flying Ad-Hoc Network (FANET). Drones 2019, 3, 16. https://doi.org/10.3390/drones3010016
Khan MA, Qureshi IM, Khanzada F. A Hybrid Communication Scheme for Efficient and Low-Cost Deployment of Future Flying Ad-Hoc Network (FANET). Drones. 2019; 3(1):16. https://doi.org/10.3390/drones3010016
Chicago/Turabian StyleKhan, Muhammad Asghar, Ijaz Mansoor Qureshi, and Fahimullah Khanzada. 2019. "A Hybrid Communication Scheme for Efficient and Low-Cost Deployment of Future Flying Ad-Hoc Network (FANET)" Drones 3, no. 1: 16. https://doi.org/10.3390/drones3010016
APA StyleKhan, M. A., Qureshi, I. M., & Khanzada, F. (2019). A Hybrid Communication Scheme for Efficient and Low-Cost Deployment of Future Flying Ad-Hoc Network (FANET). Drones, 3(1), 16. https://doi.org/10.3390/drones3010016