Next Article in Journal
Drone Monitoring of Breeding Waterbird Populations: The Case of the Glossy Ibis
Previous Article in Journal
UAS-GEOBIA Approach to Sapling Identification in Jack Pine Barrens after Fire
Article Menu
Issue 4 (December) cover image

Export Article

Open AccessArticle
Drones 2018, 2(4), 41; https://doi.org/10.3390/drones2040041

Thermal Infrared and Visual Inspection of Photovoltaic Installations by UAV Photogrammetry—Application Case: Morocco

1
Cartography–Photogrammetry Department, School of Geomatics and Surveying Engineering (Hassan II Institute of Agronomy and Veterinary Medicine), 10101 Rabat, Morocco
2
ETAFAT, 20180 Casablanca, Morocco
*
Authors to whom correspondence should be addressed.
Received: 27 September 2018 / Revised: 15 November 2018 / Accepted: 15 November 2018 / Published: 23 November 2018
  |  
PDF [11175 KB, uploaded 29 November 2018]
  |  

Abstract

Being sustainable, clean, and eco-friendly, photovoltaic technology is considered as one of the most hoped solutions face to worldwide energetic challenges. Morocco joins this context with the inauguration of numerous clean energy projects. However, one key factor in making photovoltaic installations a profitable investment are regular and effective inspections in order to detect occurred defects. Unmanned aerial vehicles (UAV) are increasingly used in various inspection fields. In this respect, this work focuses on the use of thermal and visual imagery taken by UAV in the inspection of photovoltaic installations. Visual and thermal images of photovoltaic modules, obtained by UAV, from different installations, and with different acquisition conditions and parameters, were exploited to generate orthomosaics for inspection purposes. The methodology was tested on a dataset we have acquired by a mission in Rabat (Morocco), and also on external datasets acquired in Switzerland. As final results, several visual defects were detected in visual RGB and thermal orthomosaics, such as cracks, soiling, and hotspots. In addition, a procedure of semi-automatic hotspots’ extraction was also developed and is presented within this work. On the other side, various tests were conducted on the influence of some acquisition and processing parameters (images’ overlap, the ground sampling distance, the flying height, the use of ground control points, the internal camera parameters’ optimization) on the detection of defects and the quality of visual and thermal generated orthomosaics. In the end, the potential of UAV thermal and visual imagery in the inspection of photovoltaic installations was discussed in function of various parameters. On the basis of the discussion feedback, UAV were concluded as advantageous tools within the thematic of this project, which proves the necessity of their implementation in this context. View Full-Text
Keywords: photovoltaic installation; UAV; defects; visual inspection; thermal infrared inspection; automatic detection photovoltaic installation; UAV; defects; visual inspection; thermal infrared inspection; automatic detection
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Zefri, Y.; ElKettani, A.; Sebari, I.; Ait Lamallam, S. Thermal Infrared and Visual Inspection of Photovoltaic Installations by UAV Photogrammetry—Application Case: Morocco. Drones 2018, 2, 41.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Drones EISSN 2504-446X Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top