The Use of Portable EEG Devices in Development of Immersive Virtual Reality Environments for Converting Emotional States into Specific Commands †
Abstract
:1. Introduction
2. Objectives
3. Methods
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- O’Connor, S. Virtual Reality and Avatars in Health care. In Clinical Nursing Research; SAGE Publications Inc.: Thousand Oaks, CA, USA, 2019; Volume 28, pp. 523–528. [Google Scholar]
- Freeman, D.; Reeve, S.; Robinson, A.; Ehlers, A.; Clark, D.; Spanlang, B.; Slater, M. Virtual reality in the assessment, understanding, and treatment of mental health disorders. Psychol. Med. 2017, 47, 2393–2400. [Google Scholar] [CrossRef] [PubMed]
- Pandrangi, V.C.; Gaston, B.; Appelbaum, N.P.; Albuquerque, F.C.; Levy, M.M.; Larson, R.A. The Application of Virtual Reality in Patient Education. Ann. Vasc. Surg. 2019, 59, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Botella, C.; Fernández-Álvarez, J.; Guillén, V.; García-Palacios, A.; Baños, R. Recent Progress in Virtual Reality Exposure Therapy for Phobias: A Systematic Review. Curr. Psychiatry Rep. 2017, 19, 42. [Google Scholar] [CrossRef] [PubMed]
- El Beheiry, M.; Doutreligne, S.; Caporal, C.; Ostertag, C.; Dahan, M.; Masson, J. Virtual Reality: Beyond Visualization. J. Mol. Biol. 2019, 431, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Koenig, S.T. Is Clinical Virtual Reality Ready for Primetime? Association 2017, 31, 877–899. [Google Scholar] [CrossRef] [PubMed]
- Tremmel, C.; Herff, C.; Krusienski, D.J. EEG Movement Artifact Suppression in Interactive Virtual Reality. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Berlin, Germany, 23–27 July 2019; pp. 4576–4579. [Google Scholar]
- Tauscher, J.P.; Schottky, F.W.; Grogorick, S.; Bittner, P.M.; Mustafa, M.; Magnor, M. Immersive EEG: Evaluating electroencephalography in virtual reality. In Proceedings of the 26th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2019, Osaka, Japan, 23–27 March 2019; pp. 1794–1800. [Google Scholar]
- Torner, J.; Skouras, S.; Molinuevo, J.L.; Gispert, J.D.; Alpiste, F. Multipurpose Virtual Reality Environment for Biomedical and Health Applications. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1511–1520. [Google Scholar] [CrossRef] [PubMed]
- Lookxid Labs. Lookxid Link. 2020. [Online]. Available online: https://looxidlabs.com/looxidlink/ (accessed on 20 July 2020).
- Joaquín, F.M. The Prefrontal Cortex, 4th ed.; Elsevier Ltd.: San Diego, CA, USA, 2008. [Google Scholar]
- Ko, J. Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns. Front. Neural Circuits 2017, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Fuster, J.M. The prefrontal cortex—An update: Time is of the essence. Neuron 2001, 30, 319–333. [Google Scholar] [CrossRef]
- Chao, H.; Zhi, H.; Dong, L.; Liu, Y. Recognition of Emotions Using Multichannel EEG Data and DBN-GC-Based Ensemble Deep Learning Framework. Comput. Intell. Neurosci. 2018, 2018, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zhang, Y.; Ge, Y. Frontal EEG asymmetry and middle line power difference in discrete emotions. Frontiers 2018, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Bekkedal, M.Y.V.; Rossi, J.; Panksepp, J. Neuroscience and Biobehavioral Reviews Human brain EEG indices of emotions: Delineating responses to affective vocalizations by measuring frontal theta event-related synchronization. Neurosci. Biobehav. Rev. 2011, 35, 1959–1970. [Google Scholar] [CrossRef] [PubMed]
- Id, A.Y.S.; Kasinathan, K.; Karapoondinott, V. Individual EEG measures of attention, memory, and motivation predict population level TV viewership and Twitter engagement. PLoS ONE 2019, 14, e0214507. [Google Scholar]
- Liu, N.H.; Chiang, C.Y.; Chu, H.C. Recognizing the degree of human attention using EEG signals from mobile sensors. Sensors 2013, 13, 10273–10286. [Google Scholar] [CrossRef] [PubMed]
- Bălan, O.; Moise, G.; Moldoveanu, A.; Leordeanu, M.; Moldoveanu, F. An investigation of various machine and deep learning techniques applied in automatic fear level detection and acrophobia virtual therapy. Sensors 2020, 20, 496. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sá, C.; Gomes, P.V.; Marques, A.; Correia, A. The Use of Portable EEG Devices in Development of Immersive Virtual Reality Environments for Converting Emotional States into Specific Commands. Proceedings 2020, 54, 43. https://doi.org/10.3390/proceedings2020054043
Sá C, Gomes PV, Marques A, Correia A. The Use of Portable EEG Devices in Development of Immersive Virtual Reality Environments for Converting Emotional States into Specific Commands. Proceedings. 2020; 54(1):43. https://doi.org/10.3390/proceedings2020054043
Chicago/Turabian StyleSá, Catarina, Paulo Veloso Gomes, António Marques, and António Correia. 2020. "The Use of Portable EEG Devices in Development of Immersive Virtual Reality Environments for Converting Emotional States into Specific Commands" Proceedings 54, no. 1: 43. https://doi.org/10.3390/proceedings2020054043
APA StyleSá, C., Gomes, P. V., Marques, A., & Correia, A. (2020). The Use of Portable EEG Devices in Development of Immersive Virtual Reality Environments for Converting Emotional States into Specific Commands. Proceedings, 54(1), 43. https://doi.org/10.3390/proceedings2020054043