Wafer-Scale Integration for Semi-Flexible Neural Implant Miniaturization †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Precise Definition of the Electronic Components
2.2. Fabrication of the Flexible Interconnection
2.3. Device Release and Thinning
3. Results and Discussion
- 128 small silicon islands (2 mm × 200 µm), defined with the 40 µm wide trenches, that in the final implant will contain high density AC decoupling capacitors for stimulation electrodes.
- 2 large silicon islands (17 mm × 1 mm and 18 mm × 1.1 mm), which can accommodate an ASIC, contain bond pads for wire bonding or allow for device handling during assembly.
- 10 µm thick parylene film, which at the same time connects the multidimensional silicon islands and can contain flexible stimulation electrodes in the large flexible area (17 mm × 5 mm).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lago, N.; Cester, A. Flexible and Organic Neural Interfaces: A Review. Appl. Sci. 2017, 7, 1292. [Google Scholar] [CrossRef]
- Seymour, J.; Wu, F.; Wise, K.D.; Yoon, E. State-of-the-art MEMS and microsystem tools for brain research. Microsyst. Nanoeng. 2017, 3, 16066. [Google Scholar] [CrossRef] [PubMed]
- Gad, P.; Choe, J.; Nandra, M.S.; Zhong, H.; Roy, R.R.; Tai, Y.C.; Edgerton, V.R. Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats. J. Neuroeng. Rehabil. 2013, 10. [Google Scholar] [CrossRef] [PubMed]
- Barz, F.; Lausecker, R.; Wallrabe, U.; Ruther, P.; Paul, O. Wafer-level shellac-based interconnection process for ultrathin silicon chips of arbitrary shape. In Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016; pp. 520–523. [Google Scholar]
- Schander, A.; Tolstosheeva, E.; Biefeld, V.; Kempen, L.; Stemmann, H.; Kreiter, A.; Lang, W. Design and fabrication of multi-contact flexible silicon probes for intracortical floating implantation. In Proceedings of the 2015 Transducers–2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015; pp. 1739–1742. [Google Scholar]
- Kluba, M.; Arslan, A.; Stoute, R.; Muganda, J.; Dekker, R. Single-Step CMOS Compatible Fabrication of High Aspect Ratio Microchannels Embedded in Silicon. Proceedings 2017, 1, 291. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluba, M.; Morana, B.; Savov, A.; Van Zeijl, H.; Pandraud, G.; Dekker, R. Wafer-Scale Integration for Semi-Flexible Neural Implant Miniaturization. Proceedings 2018, 2, 941. https://doi.org/10.3390/proceedings2130941
Kluba M, Morana B, Savov A, Van Zeijl H, Pandraud G, Dekker R. Wafer-Scale Integration for Semi-Flexible Neural Implant Miniaturization. Proceedings. 2018; 2(13):941. https://doi.org/10.3390/proceedings2130941
Chicago/Turabian StyleKluba, Marta, Bruno Morana, Angel Savov, Henk Van Zeijl, Gregory Pandraud, and Ronald Dekker. 2018. "Wafer-Scale Integration for Semi-Flexible Neural Implant Miniaturization" Proceedings 2, no. 13: 941. https://doi.org/10.3390/proceedings2130941
APA StyleKluba, M., Morana, B., Savov, A., Van Zeijl, H., Pandraud, G., & Dekker, R. (2018). Wafer-Scale Integration for Semi-Flexible Neural Implant Miniaturization. Proceedings, 2(13), 941. https://doi.org/10.3390/proceedings2130941