Next Issue
Volume 3, March
Previous Issue
Volume 2, September
 
 

Nitrogen, Volume 2, Issue 4 (December 2021) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
15 pages, 2758 KiB  
Article
Oilseed Rape Cultivars Show Diversity of Root Morphologies with the Potential for Better Capture of Nitrogen
by László Kupcsik, Claudia Chiodi, Taraka Ramji Moturu, Hugues De Gernier, Loïc Haelterman, Julien Louvieaux, Pascal Tillard, Craig J. Sturrock, Malcolm Bennett, Philippe Nacry and Christian Hermans
Nitrogen 2021, 2(4), 491-505; https://doi.org/10.3390/nitrogen2040033 - 14 Dec 2021
Cited by 6 | Viewed by 2412
Abstract
The worldwide demand for vegetable oils is rising. Oilseed rape (Brassica napus) diversifies cereal dominated crop rotations but requires important nitrogen input. Yet, the root organ is offering an untapped opportunity to improve the nitrogen capture in soil. This study evaluates [...] Read more.
The worldwide demand for vegetable oils is rising. Oilseed rape (Brassica napus) diversifies cereal dominated crop rotations but requires important nitrogen input. Yet, the root organ is offering an untapped opportunity to improve the nitrogen capture in soil. This study evaluates three culture systems in controlled environment, to observe root morphology and to identify root attributes for superior biomass production and nitrogen use. The phenotypic diversity in a panel of 55 modern winter oilseed rape cultivars was screened in response to two divergent nitrate supplies. Upon in vitro and hydroponic cultures, a large variability for root morphologies was observed. Root biomass and morphological traits positively correlated with shoot biomass or leaf area. The activities of high-affinity nitrate transport systems correlated negatively with the leaf area, while the combined high- and low-affinity systems positively with the total root length. The X-ray computed tomography permitted to visualize the root system in pipes filled with soil. The in vitro root phenotype at germination stage was indicative of lateral root deployment in soil-grown plants. This study highlights great genetic potential in oilseed rape, which could be manipulated to optimize crop root characteristics and nitrogen capture with substantial implications for agricultural production. Full article
Show Figures

Figure 1

17 pages, 1978 KiB  
Article
Changes in BNR Microbial Community in Response to Different Selection Pressure
by Roya Pishgar, John Albino Dominic, Joo Hwa Tay and Angus Chu
Nitrogen 2021, 2(4), 474-490; https://doi.org/10.3390/nitrogen2040032 - 14 Dec 2021
Cited by 2 | Viewed by 2183
Abstract
This study investigated structural changes in microbial community of biological nutrient removal (BNR) in response to changes in substrate composition (ammonium and phosphate), redox condition, and morphological characteristics (flocs to granules), with a focus on nitrification and phosphate removal. Analyzing treatment performance and [...] Read more.
This study investigated structural changes in microbial community of biological nutrient removal (BNR) in response to changes in substrate composition (ammonium and phosphate), redox condition, and morphological characteristics (flocs to granules), with a focus on nitrification and phosphate removal. Analyzing treatment performance and 16S rRNA phylogenetic gene sequencing data suggested that heterotrophic nitrification (HN) and autotrophic nitrification (AN) potentially happened in aerobic organic-rich (HN_AS) and aerobic organic-deficient (AN_AS) activated sludge batch reactors, respectively. However, phosphate release and uptake were not observed under alternating anaerobic/aerobic regime. Phosphate release could not be induced even when anaerobic phase was extended, although Accumulibacter existed in the inoculum (5.1% of total bacteria). Some potential HN (e.g., Thauera, Acinetobacter, Flavobacterium), AN (e.g., Nitrosomonas (3.2%) and Nitrospira), and unconventional phosphate-accumulating organisms (PAOs) were identified. Putative HN bacteria (i.e., Thauera (29–36%) and Flavobacterium (18–25%)) were enriched in aerobic granular sludge (AGS) regardless of the granular reactor operation mode. Enrichment of HN organisms in the AGS was suspected to be mainly due to granulation, possibly due to the floc-forming ability of HN species. Thus, HN is likely to play a role in nitrogen removal in AGS reactors. This study is supposed to serve as a starting point for the investigation of the microbial communities of AS- and AGS-based BNR processes. It is recommended that the identified roles for the isolated bacteria are further investigated in future works. Full article
Show Figures

Graphical abstract

13 pages, 2762 KiB  
Article
Surface Properties and Adherence of Bradyrhizobium diazoefficiens to Glycine max Roots Are Altered When Grown in Soil Extracted Nutrients
by Armaan Kaur Sandhu, Senthil Subramanian and Volker S. Brözel
Nitrogen 2021, 2(4), 461-473; https://doi.org/10.3390/nitrogen2040031 - 15 Nov 2021
Cited by 3 | Viewed by 3238
Abstract
Soybean roots are colonized and nodulated by multiple strains of compatible nitrogen-fixing rhizobia primarily belonging to the Genus Bradyrhizobium. Motility towards the root and attachment to root hairs are key determinants of competitive colonization and subsequent nodulation. Bacterial surface properties and motility [...] Read more.
Soybean roots are colonized and nodulated by multiple strains of compatible nitrogen-fixing rhizobia primarily belonging to the Genus Bradyrhizobium. Motility towards the root and attachment to root hairs are key determinants of competitive colonization and subsequent nodulation. Bacterial surface properties and motility are known to vary with chemical composition of the culture medium, and root adhesion and nodulation occur in a soil environment rather than laboratory medium. We asked whether the nodulation-promoting factors motility, surface hydrophobicity and surface adhesion of Bradyrhizobium are affected by growth in a soil nutrient environment. B. diazoefficiens USDA 110, 126, 3384, and B. elkanii USDA 26 were grown in mineral salt medium with peptone, yeast extract and arabinose (PSY), and in a soil extracted soluble organic matter (SESOM) medium. Surface hydrophobicity was determined by partitioning into hydrocarbon, motility by transition through soft agar, and surface-exposed saccharides by lectin profiling, followed by biofilm formation and soybean root adhesion capacity of populations. SESOM-grown populations were generally less motile and more hydrophobic. They bound fewer lectins than PSY-grown populations, indicating a simpler surface saccharide profile. SESOM populations of USDA 110 did not form detectable biofilm, but showed increased binding to soy roots. Our results indicate that growth in a soil environment impacts surface properties, motility, and subsequent soy root adhesion propensity. Hence, evaluation of Bradyrhizobium for nodulation efficiency should be performed using soil from the specific field where the soybeans are to be planted, rather than laboratory culture media. Full article
Show Figures

Figure 1

17 pages, 3191 KiB  
Article
Short-Term Effect of Nitrogen Fertilization on Carbon Mineralization during Corn Residue Decomposition in Soil
by Tanjila Jesmin, Dakota T. Mitchell and Richard L. Mulvaney
Nitrogen 2021, 2(4), 444-460; https://doi.org/10.3390/nitrogen2040030 - 27 Oct 2021
Cited by 9 | Viewed by 5530
Abstract
The effect of N fertilization on residue decomposition has been studied extensively; however, contrasting results reflect differences in residue quality, the form of N applied, and the type of soil studied. A 60 d laboratory incubation experiment was conducted to ascertain the effect [...] Read more.
The effect of N fertilization on residue decomposition has been studied extensively; however, contrasting results reflect differences in residue quality, the form of N applied, and the type of soil studied. A 60 d laboratory incubation experiment was conducted to ascertain the effect of synthetic N addition on the decomposition of two corn (Zea mays L.) stover mixtures differing in C:N ratio by continuous monitoring of CO2 emissions and periodic measurement of microbial biomass and enzyme activities involved in C and N cycling. Cumulative CO2 production was greater for the high than low N residue treatment, and was significantly increased by the addition of exogenous N. The latter effect was prominent during the first month of incubation, whereas N-treated soils produced less CO2 in the second month, as would be expected due to more rapid substrate depletion from microbial C utilization previously enhanced by greater N availability. The stimulatory effect of exogenous N was verified with respect to active biomass, microbial biomass C and N, and cellulase and protease activities, all of which were significantly correlated with cumulative CO2 production. Intensive N fertilization in modern corn production increases the input of residues but is not conducive to soil C sequestration. Full article
Show Figures

Figure 1

16 pages, 4743 KiB  
Article
Distribution of Dissolved Nitrogen Compounds in the Water Column of a Meromictic Subarctic Lake
by Taisiya Ya. Vorobyeva, Anna A. Chupakova, Artem V. Chupakov, Svetlana A. Zabelina, Olga Y. Moreva and Oleg S. Pokrovsky
Nitrogen 2021, 2(4), 428-443; https://doi.org/10.3390/nitrogen2040029 - 13 Oct 2021
Cited by 2 | Viewed by 2890
Abstract
In order to better understand the biogeochemical cycle of nitrogen in meromictic lakes, which can serve as a model for past aquatic environments, we measured dissolved concentrations of nitrate, nitrite, ammonium, and organic nitrogen in the deep (39 m maximal depth) subarctic Lake [...] Read more.
In order to better understand the biogeochemical cycle of nitrogen in meromictic lakes, which can serve as a model for past aquatic environments, we measured dissolved concentrations of nitrate, nitrite, ammonium, and organic nitrogen in the deep (39 m maximal depth) subarctic Lake Svetloe (NW Russia). The lake is a rare type of freshwater meromictic water body with high concentrations of methane, ferrous iron, and manganese and low concentrations of sulfates and sulfides in the monimolimnion. In the oligotrophic mixolimnion, the concentration of mineral forms of nitrogen decreased in summer compared to winter, likely due to a phytoplankton bloom. The decomposition of the bulk of the organic matter occurs under microaerophilic/anaerobic conditions of the chemocline and is accompanied by the accumulation of nitrogen in the form of N-NH4 in the monimolimnion. We revealed a strong relationship between methane and nitrogen cycles in the chemocline and monimolimnion horizons. The nitrate concentrations in Lake Svetloe varied from 9 to 13 μM throughout the water column. This fact is rare for meromictic lakes, where nitrate concentrations up to 13 µM are found in the monimolimnion zone down to the bottom layers. We hypothesize, in accord with available data for other stratified lakes that under conditions of high concentrations of manganese and ammonium at the boundary of redox conditions and below, anaerobic nitrification with the formation of nitrate occurs. Overall, most of the organic matter in Lake Svetloe undergoes biodegradation essentially under microaerophilic/anaerobic conditions of the chemocline and the monimolimnion. Consequently, the manifestation of the biogeochemical nitrogen cycle is expressed in these horizons in the most vivid and complex relationship with other cycles of elements. Full article
Show Figures

Figure 1

13 pages, 1907 KiB  
Article
Winter Malting Barley Growth, Yield, and Quality following Leguminous Cover Crops in the Northeast United States
by Arthur Siller, Heather Darby, Alexandra Smychkovich and Masoud Hashemi
Nitrogen 2021, 2(4), 415-427; https://doi.org/10.3390/nitrogen2040028 - 08 Oct 2021
Cited by 1 | Viewed by 2454
Abstract
There is growing interest in malting barley (Hordeum vulgare L.) production in the Northeastern United States. This crop must meet high quality standards for malting but can command a high price if these quality thresholds are met. A two-year field experiment was [...] Read more.
There is growing interest in malting barley (Hordeum vulgare L.) production in the Northeastern United States. This crop must meet high quality standards for malting but can command a high price if these quality thresholds are met. A two-year field experiment was conducted from 2015 to 2017 to evaluate the impact of two leguminous cover crops, sunn hemp (Crotalaria juncea L.) and crimson clover (Trifolium incarnatum L.), on subsequent winter malting barley production. Four cover crop treatments—sunn hemp (SH), crimson clover (CC), sunn hemp and crimson clover mixture (SH + CC), and no cover crop (NC)—were grown before planting barley at three seeding rates (300, 350, and 400 seeds m−2). SH and SH + CC produced significantly more biomass and residual nitrogen than the CC and NC treatments. Higher barley seeding rates led to higher seedling density and winter survival. However, the subsequent spring and summer barley growth metrics, yield, and malting quality were not different in any of the treatments. There is much left to investigate in determining the best malting barley production practices in the Northeastern United States, but these results show that winter malting barley can be successfully integrated into crop rotations with leguminous plants without negative impacts on barley growth, yield, and grain quality. Full article
Show Figures

Figure 1

23 pages, 1684 KiB  
Article
Evaluating APSIM-and-DSSAT-CERES-Maize Models under Rainfed Conditions Using Zambian Rainfed Maize Cultivars
by Charles B. Chisanga, Elijah Phiri and Vernon R. N. Chinene
Nitrogen 2021, 2(4), 392-414; https://doi.org/10.3390/nitrogen2040027 - 23 Sep 2021
Cited by 7 | Viewed by 3576
Abstract
Crop model calibration and validation is vital for establishing their credibility and ability in simulating crop growth and yield. A split–split plot design field experiment was carried out with sowing dates (SD1, SD2 and SD3); maize cultivars (ZMS606, PHB30G19 and PHB30B50) and nitrogen [...] Read more.
Crop model calibration and validation is vital for establishing their credibility and ability in simulating crop growth and yield. A split–split plot design field experiment was carried out with sowing dates (SD1, SD2 and SD3); maize cultivars (ZMS606, PHB30G19 and PHB30B50) and nitrogen fertilizer rates (N1, N2 and N3) as the main plot, subplot and sub-subplot with three replicates, respectively. The experiment was carried out at Mount Makulu Central Research Station, Chilanga, Zambia in the 2016/2017 season. The study objective was to calibrate and validate APSIM-Maize and DSSAT-CERES-Maize models in simulating phenology, mLAI, soil water content, aboveground biomass and grain yield under rainfed and irrigated conditions. Days after planting to anthesis (APSIM-Maize, anthesis (DAP) RMSE = 1.91 days; DSSAT-CERES-Maize, anthesis (DAP) RMSE = 2.89 days) and maturity (APSIM-Maize, maturity (DAP) RMSE = 3.35 days; DSSAT-CERES-Maize, maturity (DAP) RMSE = 3.13 days) were adequately simulated, with RMSEn being <5%. The grain yield RMSE was 1.38 t ha−1 (APSIM-Maize) and 0.84 t ha−1 (DSSAT-CERES-Maize). The APSIM- and-DSSAT-CERES-Maize models accurately simulated the grain yield, grain number m−2, soil water content (soil layers 1–8, RMSEn ≤ 20%), biomass and grain yield, with RMSEn ≤ 30% under rainfed condition. Model validation showed acceptable performances under the irrigated condition. The models can be used in identifying management options provided climate and soil physiochemical properties are available. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop