Analysis of Finite Integrals with Incomplete Aleph Functions, Mittag-Leffler Generalizations, and the Error Function
Abstract
1. Introduction and Preliminaries
Required Integral
2. Main Integral
3. Special Cases
4. Applications and Numerical Illustrations
4.1. Error Function Integral
4.2. Mittag-Leffler Function
4.3. Discussion
- The formulas derived in Theorems 1 and 2 can be verified numerically and yield meaningful values for specific parameters.
- The error function integral connects directly to probability theory and diffusion processes.
- The Mittag-Leffler function illustrates the role of fractional calculus in modeling anomalous diffusion and relaxation phenomena.
5. Concluding Remarks
- Extending classical integrals with the error function to settings involving incomplete Aleph and Mittag-Leffler functions of several variables.
- Demonstrating that numerous known results from the literature (Srivastava–Tomovski, Saxena’s I-function, Fox’s H-function, and others) appear as corollaries of our general theorem.
- Providing explicit examples, numerical illustrations, and graphs to show the verifiability and usefulness of the results beyond formal theory.
- Numerical methods for evaluating the incomplete Aleph function and its special cases.
- Applications to specific physical models (heat conduction, viscoelastic materials, stochastic processes, etc.).
- Further generalizations to q-analogs and multidimensional integrals.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Srivastava, H.M.; Chaudhary, M.A.; Agarwal, R.P. The incomplete Pochhammer symbols and their applications to hypergeometric and related functions. Integral Transform. Spec. Funct. 2012, 23, 659–683. [Google Scholar] [CrossRef]
- Kumar, D.; Ayant, F.Y.; Bajrolia, M.S. Improper integrals involving the incomplete Aleph-functions. Sohag J. Math. 2024, 11, 23–27. [Google Scholar]
- Kumar, D.; Ayant, F.Y.; Suthar, D.L.; Nirwan, P.; Kumari, M. Boros integral involving the class of polynomials and incomplete ℵ–functions. Proc. Indian Natl. Sci. Acad. 2025, 91, 325–332. [Google Scholar] [CrossRef]
- Kumar, D.; Ayant, F.Y.; Nirwan, P.; Suthar, D.L. Boros integral involving the generalized multi-index Mittag-Leffler function and incomplete I–functions. Res. Math. 2022, 9, 2086761. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxena, R.K.; Parmar, R.K. Some families of the incomplete H-function and the incomplete -functions and associated integrals transforms and operators of fractional calculus with applications. Russ. J. Math. Phys. 2018, 25, 116–138. [Google Scholar] [CrossRef]
- Bansal, M.K.; Kumar, D.; Nisar, K.S.; Singh, J. Certain fractional calculus and integral transform results of incomplete ℵ-functions with applications. Math. Methods Appl. Sci. 2020, 43, 5602–5614. [Google Scholar] [CrossRef]
- Bansal, M.K.; Kumar, D. On the integral operators pertaining to a family of incomplete I-functions. AIMS Math. 2020, 5, 1247–1259. [Google Scholar] [CrossRef]
- Bansal, M.K.; Kumar, D.; Khan, I.; Singh, J.; Nisar, K.S. Certain unified integrals associated with product of M-series and incomplete H-functions. Mathematics 2019, 7, 1191. [Google Scholar] [CrossRef]
- Euler, L. De progressionibus transcendenti bus. Novi Comment. Acad. Sci. Imp. Petropol. 1729, 5, 61–95. [Google Scholar]
- Kumar, D.; Ayant, F.Y.; Uçar, F. Integral involving Aleph-function and the generalized incomplete hypergeometric function. TWMS J. App. Eng. Math. 2020, 10, 650–656. [Google Scholar] [CrossRef]
- Saxena, V.P. The I-Function; Anamaya Publishers: New Delhi, India, 2008. [Google Scholar]
- Gujar, M.K.; Prajapati, J.C.; Gupta, K. A study of generalized Mittag-Leffler function via fractional calculus. J. Inequal. Spec. Funct. 2014, 5, 6–13. [Google Scholar]
- Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. Fract. Calc. Appl. Anal. 2012, 3, 1–13. [Google Scholar]
- Khan, N.; Khan, M.I.; Usman, T.; Nonlaopon, K.; Al-Omari, S. Unified integrals of generalized Mittag–Leffler functions and their graphical numerical investigation. Symmetry 2022, 14, 869. [Google Scholar] [CrossRef]
- Salim, T.O. Some properties relating to the generalized Mittag-Leffler function. Adv. Appl. Math. Anal. 2009, 4, 21–30. [Google Scholar]
- Kumar, D.; Ram, J.; Choi, J. Dirichlet averages of generalized Mittag– Leffler type function. Fractal Fract. 2022, 6, 297. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tomovski, Z. Fractional calculus with an integral operator containing generalized Mittag–Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Bakhet, A.; Hussain, S.; Zayed, M. On fractional operators involving the incomplete Mittag–Leffler matrix function and its applications. Symmetry 2024, 16, 963. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Wiman, A. Über der Fundamentalsatz in der Theorie der Funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. 1903, 137, 554–558. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover Publications: New York, NY, USA, 1964. [Google Scholar]
- Brychkov, Y.A. Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2008. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Südland, N.; Baumann, N.B.; Nonnenmacher, T.F. Open problem: Who knows about the Aleph-functions? Fract. Calc. Appl. Anal. 1998, 1, 401–402. [Google Scholar]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.; Ayant, F.; Gurjar, M.K.; Vishnoi, A.K.; Solanki, S. Analysis of Finite Integrals with Incomplete Aleph Functions, Mittag-Leffler Generalizations, and the Error Function. Fractal Fract. 2025, 9, 734. https://doi.org/10.3390/fractalfract9110734
Kumar D, Ayant F, Gurjar MK, Vishnoi AK, Solanki S. Analysis of Finite Integrals with Incomplete Aleph Functions, Mittag-Leffler Generalizations, and the Error Function. Fractal and Fractional. 2025; 9(11):734. https://doi.org/10.3390/fractalfract9110734
Chicago/Turabian StyleKumar, Dinesh, Frédéric Ayant, Meena Kumari Gurjar, Anil Kumar Vishnoi, and Saroj Solanki. 2025. "Analysis of Finite Integrals with Incomplete Aleph Functions, Mittag-Leffler Generalizations, and the Error Function" Fractal and Fractional 9, no. 11: 734. https://doi.org/10.3390/fractalfract9110734
APA StyleKumar, D., Ayant, F., Gurjar, M. K., Vishnoi, A. K., & Solanki, S. (2025). Analysis of Finite Integrals with Incomplete Aleph Functions, Mittag-Leffler Generalizations, and the Error Function. Fractal and Fractional, 9(11), 734. https://doi.org/10.3390/fractalfract9110734

