Interaction Solutions for the Fractional KdVSKR Equations in (1+1)-Dimension and (2+1)-Dimension
Abstract
:1. Introduction
2. Exact Solutions of (1)
2.1. Soliton Solutions
2.1.1. One-Soliton Solution
2.1.2. Two-Soliton Solution
2.1.3. Three-Soliton Solution
2.1.4. Generalized Kaup-Kupershmidt Solitary Waves
2.2. Interaction Solution between Soliton and Elliptical Solution
2.3. Lump–Periodic Interaction Solution
3. New Solutions of (2) by the CREM
3.1. Explanation of the CREM
3.2. Exact Solutions by the CREM
4. Interaction Solutions of (2) by the FSGM
4.1. Finite Symmetry Group of (14)
4.2. Dark–Soliton–Sine Interaction Solution for (2)
4.3. Bright–Soliton–Elliptical Interaction Solution for (2)
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KdV | Korteweg-de Vries |
KdVSKR | Korteweg-de Vries Sawada-Kotera-Ramani |
FKdVSKR | fractional Korteweg-de Vries Sawada-Kotera-Ramani |
SK | Sawada-Kotera |
KP | Kadomtsev-Petviashvili |
FDEs | fractional differential equations |
PDEs | partial differential equations |
ODEs | ordinary differential equations |
HBM | Hirota bilinear method |
FSGM | finite symmetry group method |
CREM | consistent Riccati expansion method |
GKK | generalized Kaup–Kupershmidt |
References
- Ma, P.C.; Taghipour, M.; Cattani, C. Option pricing in the illiquid markets under the mixed fractional Brownian motion model. Chaos Solitons Fractals 2024, 182, 114806. [Google Scholar] [CrossRef]
- Chen, Q.L.; Dipesh; Kumar, P.; Baskonus, H.M. Modeling and analysis of demand-supply dynamics with a collectability factor using delay differential equations in economic growth via the Caputo operator. AIMS Math. 2024, 9, 7471–7491. [Google Scholar] [CrossRef]
- Kavya, K.N.; Veeresha, P.; Baskonus, H.M.; Alsulami, M. Mathematical modeling to investigate the influence of vaccination and booster doses on the spread of Omicron. Commun. Nonlinear Sci. Numer. Simul. 2024, 130, 107755. [Google Scholar] [CrossRef]
- Cattani, C.; Baskonus, H.M.; Ciancio, A. Introduction to the special issue on recent developments on computational biology-i. CMES Comput. Model. Eng. Sci. 2024, 139, 2261–2264. [Google Scholar] [CrossRef]
- Wang, G.W.; Liu, X.Q.; Zhang, Y.Y. Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 2321–2326. [Google Scholar] [CrossRef]
- Li, Z.B.; He, J.H. Fractional complex transform for fractional differential equations. Math. Comput. Appl. 2016, 15, 970–973. [Google Scholar] [CrossRef]
- Saad, K.M.; Baleanu, D.; Atangana, A. New fractional derivatives applied to the Korteweg-deVries and Korteweg-de Vries-Burger’s equations. Comp. Appl. Math. 2018, 37, 5203–5216. [Google Scholar] [CrossRef]
- Yang, X.J.; Machado, J.T.; Baleanu, D.; Cattani, C. A new method for exact solutions of variant types of time-fractional Korteweg-de Vries equations in shallow water waves. Chaos. Interdiscip. J. Nonlinear Sci. 2016, 26, 084312. [Google Scholar] [CrossRef] [PubMed]
- He, J.H. The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators. J. Low Freq. Noise Vib. Act. 2019, 38, 1252–1260. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Jumarie, G. Modified Riemann-Liouville derivative and fractional Taylor series of non differentiable functions further results. Comput. Math. Appl. 2006, 51, 1367–1376. [Google Scholar] [CrossRef]
- Baleanu, D.; Atangana, A. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar]
- Yang, X.J.; Aty, M.A.; Cattani, C. New general fractional-order derivative with rabotnov fractional-exponential kernel applied to model the anomalous heat transfer. Therm. Sci. 2019, 23, 1677–1681. [Google Scholar] [CrossRef]
- Gou, C.H.; Cai, R.X.; Zhang, N. Explicit analytical solutions of transport equations considering non-Fourier and non-Fick effects in porous media. Prog. Nat. Sci. 2005, 15, 545–549. [Google Scholar]
- Zhang, L.H.; Shen, B.; Jiao, H.B.; Wang, G.W.; Wang, Z.L. Exact solutions for the KMM system in (2+1)-dimensions and its fractional form with Beta-derivative. Fractal Fract. 2022, 6, 520. [Google Scholar] [CrossRef]
- Zhang, L.H.; Wang, Z.L.; Shen, B. Fractional complex transforms, reduced equations and exact solutions of the fractional Kraenkel-Manna-Merle system. Fractals 2022, 30, 22501791. [Google Scholar] [CrossRef]
- Baleanu, D.; Inc, M.; Yusuf, A.; Aliyu, A.I. Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 222–234. [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, X.J.; Geng, L.L.; Fan, Y.R. Group analysis of the time fractional (3+1)-dimensional KdV-type equation. Fractals 2021, 29, 2150169. [Google Scholar] [CrossRef]
- Wang, G.W.; Kara, A.H.; Fakhar, K. Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation. Nonlinear Dyn. 2015, 82, 281–287. [Google Scholar] [CrossRef]
- Inc, M.; Yusuf, A.; Aliyu, A.I.; Baleanu, D. Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis. Physica A 2018, 493, 94–106. [Google Scholar] [CrossRef]
- Sahadevan, R.; Bakkyaraj, T. Invariant analysis of time fractional generalized burgers and Korteweg-de vries equations. J. Math. Anal. Appl. 2012, 393, 341–347. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 2011, 375, 1069–1073. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S. Improved fractional sub-equation method for (3+1) -dimensional generalized fractional KdV-Zakharov-Kuznetsov equations. Comput. Math. Appl. 2015, 70, 158–166. [Google Scholar] [CrossRef]
- Murad, M.A.S.; Ismael, H.F.; Hamasalh, F.K.; Shah, N.A.; Eldin, S.M. Optical soliton solutions for time-fractional Ginzburg-Landau equation by a modified sub-equation method. Results Phys. 2023, 53, 106950. [Google Scholar] [CrossRef]
- Zheng, B. G′/G-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 2012, 58, 623–630. [Google Scholar] [CrossRef]
- Zulfiqar, A.; Ahmad, J.; Ul-Hassan, Q.M. Analysis of some new wave solutions of fractional order generalized Pochhammer-Chree equation using exp-function method. Opt. Quant. Electron. 2022, 54, 735. [Google Scholar] [CrossRef]
- Noor, S.; Alyousef, H.A.; Shafee, A.; Shah, R.; El-Tantawy, S.A. A novel analytical technique for analyzing the (3+1)-dimensional fractional Calogero- Bogoyavlenskii-Schiff equation: Investigating solitary/shock waves and many others physical phenomena. Phys. Scr. 2024, 99, 065257. [Google Scholar] [CrossRef]
- Afzal, U.; Raza, N.; Murtaza, I.G. On soliton solutions of time fractional form of Sawada–Kotera equation. Nonlinear Dyn. 2019, 95, 391–405. [Google Scholar] [CrossRef]
- Özkan, A.; Özkan, E.M. A novel study of analytical solutions of some important nonlinear fractional differential equations in fluid dynamics. Mod. Phys. Lett. B 2024, 2450461. [Google Scholar] [CrossRef]
- Rao, A.; Vats, R.K.; Yadav, S. Analytical solution for time-fractional cold plasma equations via novel computational method. Int. J. Appl. Comput. Math. 2024, 10, 2. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Mahmud, A.A.; Muhamad, K.A.; Tanriverdi, T. A study on Caudrey-Dodd-Gibbon-Sawada-Kotera partial diferential equation. Math. Methods Appl. Sci. 2022, 45, 8737–8753. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Lou, S.Y.; Ma, H.C. Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method. J. Phys. A Math. Gen. 2005, 38, 129–137. [Google Scholar] [CrossRef]
- Din, M.S.T.; Ali, A. Exp(−ϕ(η)) expansion method and shifted Chebyshev Wavelets for generalized Sawada-Kotera of fractional order. Fund. Inform. 2017, 151, 173–190. [Google Scholar]
- Lou, S.Y. Consistent Riccati expansion for integrable systems. Stud. Appl. Math. 2015, 134, 372–402. [Google Scholar] [CrossRef]
- Ren, B.; Lin, J.; Lou, Z.M. Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation. Appl. Math. Lett. 2020, 105, 106326. [Google Scholar] [CrossRef]
- Wang, K.J.; Liu, J.H.; Si, J.; Shi, F.; Wang, G.D. N-Soliton, breather, lump solutions and diverse travelling wave solutions of the fractional (2+1)-dimensional Boussinesq equation. Fractals 2023, 31, 23500238. [Google Scholar]
- Biswas, S.; Ghosh, U.; Raut, S. Construction of fractional Granular model and bright, dark, lump, breather types soliton solutions using Hirota bilinear method. Chaos Solitons Fractals 2023, 172, 13520. [Google Scholar] [CrossRef]
- Younas, U.; Sulaiman, T.A.; Ismael, H.F.; Shah, N.A.; Eldin, S.M. On the lump interaction phenomena to the conformable fractional (2+1)-dimensional KdV equation. Results Phys. 2023, 52, 106863. [Google Scholar] [CrossRef]
- Jaradat, H.M.; Shara, S.A.; Jaradat, M.M.M.; Mustafa, Z.; Alsayyed, O.; Alquran, M.; Abohassan, K.M.; Momani, S. New solitary wave and multiple soliton solutions for the time-space coupled fractional mKdV system with time-dependent coefficients. J. Comput. Theor. Nanosci. 2016, 13, 9082–9089. [Google Scholar]
- Xiong, N.; Yu, Y.X.; Li, B. Soliton molecules and full symmetry groups to the KdV -Sawada-Kotera-Ramani equation. Adv. Math. Phys. 2021, 1, 5534996. [Google Scholar] [CrossRef]
- Ma, P.L.; Tian, S.F.; Zhang, T.T.; Zhang, X.Y. On Lie symmetries, exact solutions and integrability to the KdV -Sawada-Kotera-Ramani equation. Eur. Phys. J. Plus 2016, 131, 98. [Google Scholar] [CrossRef]
- Zhang, L.J.; Chaudry, M.K. Exact solitary wave and quasi-periodic wave solutions of the KdV-Sawada-Kotera-Ramani equation. Adv. Differ. Equ. 2015, 195, 13662. [Google Scholar] [CrossRef]
- Burde, G.I. Generalized Kaup-Kupershmidt solitons and other solitary wave solutions of the higher-order KdV equations. J. Phys. A Math. Gen. 2010, 43, 085208. [Google Scholar] [CrossRef]
- Osman, M.S. Analytical study of rational and double-soliton rational solutions governed by the KdV-Sawada-Kotera-Ramani equation with variable coefficients. Nonlinear Dyn. 2017, 89, 2283–2289. [Google Scholar] [CrossRef]
- Cheng, W.G.; Xu, T.Z. Consistent Riccati expansion solvable classification and soliton-cnoidal wave interaction solutions for an extended Korteweg-de Vries equation. Chin. J. Phys. 2018, 56, 2753–2759. [Google Scholar] [CrossRef]
- Wang, H.; Xia, T.C. Bell polynomial approach to an extended Korteweg-de Vries equation. Math. Method Appl. Sci. 2014, 37, 1476–1487. [Google Scholar] [CrossRef]
- Xia, Y.R.; Yao, R.X.; Xin, X.P.; Li, Y. Trajectory equation of a lump before and after collision with other waves for (2+1)-dimensional Sawada-Kotera equation. Appl. Math. Lett. 2023, 135, 108408. [Google Scholar] [CrossRef]
- Zhu, C.; Long, C.X.; Zhou, Y.T.; Wei, P.F.; Ren, B.; Wang, W.L. Dynamics of multi-solitons, multi-lumps and hybrid solutions in (2+1)-dimensional korteweg-de vries-Sawada-Kotera-Ramani equation. Results Phys. 2022, 34, 105248. [Google Scholar] [CrossRef]
- Wei, P.F.; Long, C.X.; Zhu, C.; Zhou, Y.T.; Yu, H.Z.; Ren, B. Soliton molecules, multi-breathers and hybrid solutions in (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation. Chaos Solitons Fractals 2022, 158, 112062. [Google Scholar] [CrossRef]
- Ma, H.C.; Deng, A.P.; Gao, Y.D. Novel y-type and hybrid solutions for the (2+1) -dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation. Nonlinear Dyn. 2023, 111, 4645–4656. [Google Scholar] [CrossRef]
- Li, L.X.; Dai, Z.D.; Cheng, B.T.; Li, R.B. Nonlinear superposition between lump soliton and other nonlinear localized waves for the (2+1)-dimensional Korteweg-deVries-Sawada-Kotera-Ramani equation. Results Phys. 2023, 49, 106516. [Google Scholar] [CrossRef]
- Chen, W.X.; Tang, L.P.; Tian, L.X. New interaction solutions of the KdV-Sawada-Kotera-Ramani equation in various dimensions. Phys. Scr. 2023, 98, 055217. [Google Scholar] [CrossRef]
- Ren, B.; Lin, J.; Wang, W.L. Painlevé analysis, infinite dimensional symmetry group and symmetry reductions for the (2+1)-dimensional Korteweg-de Vries-Sawada-Ramani equation. Commun. Theor. Phys. 2023, 75, 085006. [Google Scholar] [CrossRef]
- Chen, H.T.; Zhang, H.Q. New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation. Appl. Math. Comput. 2004, 157, 765–769. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zheng, Z.; Shen, B.; Wang, G.; Wang, Z. Interaction Solutions for the Fractional KdVSKR Equations in (1+1)-Dimension and (2+1)-Dimension. Fractal Fract. 2024, 8, 517. https://doi.org/10.3390/fractalfract8090517
Zhang L, Zheng Z, Shen B, Wang G, Wang Z. Interaction Solutions for the Fractional KdVSKR Equations in (1+1)-Dimension and (2+1)-Dimension. Fractal and Fractional. 2024; 8(9):517. https://doi.org/10.3390/fractalfract8090517
Chicago/Turabian StyleZhang, Lihua, Zitong Zheng, Bo Shen, Gangwei Wang, and Zhenli Wang. 2024. "Interaction Solutions for the Fractional KdVSKR Equations in (1+1)-Dimension and (2+1)-Dimension" Fractal and Fractional 8, no. 9: 517. https://doi.org/10.3390/fractalfract8090517
APA StyleZhang, L., Zheng, Z., Shen, B., Wang, G., & Wang, Z. (2024). Interaction Solutions for the Fractional KdVSKR Equations in (1+1)-Dimension and (2+1)-Dimension. Fractal and Fractional, 8(9), 517. https://doi.org/10.3390/fractalfract8090517