Derivation of Closed-Form Expressions in Apéry-like Series Using Fractional Calculus and Applications
Abstract
:1. Introduction
2. Fractional Calculus
- 1.
- The left-sided half integral is
- 2.
- The left-sided half derivative is
- 3.
- The right-sided half integral is
- 4.
- The right-sided half derivative is
3. Summation of Apéry-like Series
3.1. Analysis of Type I: Apéry-like Series
3.2. Analysis of Type II: Apéry-like Series
3.3. Analysis of Type III: Apéry-like Series
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Results of Type I Apéry-like Series Fm(x)
Appendix B. Additional Results of Type II Apéry-like Series Gm(x)
References
- Borwein, J.M.; Straub, A.; Wan, J.; Zudilin, W.; Zagier, D. Densities of short uniform random walks. Can. J. Math. 2012, 64, 961–990. [Google Scholar] [CrossRef]
- Laohakosol, V.; Meesa, R.; Sutthimat, P. Closed-form solutions of general second order linear recurrences and applications. Discret. Math. 2023, 346, 113206. [Google Scholar] [CrossRef]
- Sutthimat, P.; Laohakosol, V.; Meesa, R. A unified approach to derive explicit solutions of generalized second-order linear recurrences and applications. Discret. Math. 2024, 347, 113757. [Google Scholar] [CrossRef]
- Chaichana, T.; Laohakosol, V.; Meesa, R. Derivation of some identities and applications: Annual Meeting in Mathematics 2023. Thai J. Math. 2024, 22, 263–269. [Google Scholar]
- Straub, A.; Zudilin, W. Positivity of rational functions and their diagonals. J. Approx. Theory 2015, 195, 57–69. [Google Scholar] [CrossRef]
- Straub, A. Multivariate Apéry numbers and supercongruences of rational functions. Algebra Number Theory 2014, 8, 1985–2008. [Google Scholar] [CrossRef]
- Rogers, M.D.; Straub, A. A solution of Sun’s $520 challenge concerning. Int. J. Number Theory 2013, 9, 1273–1288. [Google Scholar] [CrossRef]
- Berndt, B.C.; Lamphere, R.L.; Wilson, B. Chapter 12 of Ramanujan’s second notebook: Continued fractions. Rocky Mt. J. Math. 1985, 15, 235–310. [Google Scholar] [CrossRef]
- Van der Poorten, A.J. Some wonderful formulae… Footnotes to Apery’s proof of the irrationality of ζ(3). Séminaire-Delange-Pisot-Poitou. Théorie Nr. 1978, 20, 7. [Google Scholar]
- Zucker, I. On the series and related sums. J. Number Theory 1985, 20, 92–102. [Google Scholar] [CrossRef]
- Sherman, T. Summation of Glaisher- and Apéry-like Series. Available online: https://api.semanticscholar.org/CorpusID:146282789 (accessed on 25 February 2024).
- The Ramanujan Machine. Available online: www.ramanujanmachine.com (accessed on 25 February 2024).
- Raayoni, G.; Gottlieb, S.; Pisha, G.; Harris, Y.; Manor, Y.; Mendlovic, U.; Haviv, D.; Hadad, Y.; Kaminer, I. The Ramanujan Machine: Automatically generated conjectures on fundamental constants. arXiv 2019, arXiv:1907.00205. [Google Scholar]
- Raayoni, G.; Gottlieb, S.; Manor, Y.; Pisha, G.; Harris, Y.; Mendlovic, U.; Haviv, D.; Hadad, Y.; Kaminer, I. Generating conjectures on fundamental constants with the Ramanujan Machine. Nature 2021, 590, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: London, UK, 1993. [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Yang, X.J.; Gao, F.; Ju, Y. Chapter 2—Fractional derivatives with singular kernels. In General Fractional Derivatives with Applications in Viscoelasticity; Academic Press: Cambridge, MA, USA, 2020; pp. 95–207. [Google Scholar]
- Boonklurb, R.; Duangpan, A.; Rakwongwan, U.; Sutthimat, P. A novel analytical formula for the discounted moments of the ECIR process and interest rate swaps pricing. Fractal Fract. 2022, 6, 58. [Google Scholar] [CrossRef]
- Duangpan, A.; Boonklurb, R.; Juytai, M. Numerical solutions for systems of fractional and classical integro-differential equations via Finite Integration Method based on shifted Chebyshev polynomials. Fractal Fract. 2021, 5, 103. [Google Scholar] [CrossRef]
- Arfken, G.B.; Weber, H.J.; Harris, F.E. Chapter 13—Gamma Function. In Mathematical Methods for Physicists, 7th ed.; Academic Press: Boston, MA, USA, 2013; pp. 599–641. [Google Scholar]
- Krug, A. Theorie der Derivationen; Kaiserlich-Königliche Hof-und Staatsdruckerei: Vienna, Austria, 1890. [Google Scholar]
- Jungić, V.; Burazinb, A.; Lovrić, M. Wallis m-integrals and their properties. SCIENTIA Ser. Math. Sci. 2023, 33, 61–72. [Google Scholar]
- Berndt, B.C. Ramanujan’s Notebooks: Part I; Springer: New York, NY, USA, 1985. [Google Scholar]
- Hofmann, J.E. On the discovery of the logarithmic series and its development in England up to Cotes. Natl. Math. Mag. 1939, 14, 37–45. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Boston, MA, USA, 2014. [Google Scholar]
- Szeg, G. Orthogonal Polynomials; American Mathematical Society: Providence, RI, USA, 1939; Volume 23. [Google Scholar]
- Jayarama, P.; Lim, D.; Rathie, A.K. On several results associated with the Apéry-like series. Symmetry 2023, 15, 1022. [Google Scholar] [CrossRef]
- Jones, W.B.; Thron, W.J. Continued Fractions: Analytic Theory and Applications; Encyclopedia of Mathematics and Its Applications; Addison-Wesley Publishing Co.: Carrollton, TX, USA, 1980. [Google Scholar]
- Sutthimat, P.; Mekchay, K. Closed-form formulas for conditional moments of inhomogeneous Pearson diffusion processes. Commun. Nonlinear Sci. Numer. Simul. 2022, 106, 106095. [Google Scholar] [CrossRef]
- Sutthimat, P.; Mekchay, K.; Rujivan, S. Closed-form formula for conditional moments of generalized nonlinear drift CEV process. Appl. Math. Comput. 2022, 428, 127213. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duangpan, A.; Boonklurb, R.; Rakwongwan, U.; Sutthimat, P. Derivation of Closed-Form Expressions in Apéry-like Series Using Fractional Calculus and Applications. Fractal Fract. 2024, 8, 406. https://doi.org/10.3390/fractalfract8070406
Duangpan A, Boonklurb R, Rakwongwan U, Sutthimat P. Derivation of Closed-Form Expressions in Apéry-like Series Using Fractional Calculus and Applications. Fractal and Fractional. 2024; 8(7):406. https://doi.org/10.3390/fractalfract8070406
Chicago/Turabian StyleDuangpan, Ampol, Ratinan Boonklurb, Udomsak Rakwongwan, and Phiraphat Sutthimat. 2024. "Derivation of Closed-Form Expressions in Apéry-like Series Using Fractional Calculus and Applications" Fractal and Fractional 8, no. 7: 406. https://doi.org/10.3390/fractalfract8070406
APA StyleDuangpan, A., Boonklurb, R., Rakwongwan, U., & Sutthimat, P. (2024). Derivation of Closed-Form Expressions in Apéry-like Series Using Fractional Calculus and Applications. Fractal and Fractional, 8(7), 406. https://doi.org/10.3390/fractalfract8070406