Fuzzy Subordination Results for Meromorphic Functions Connected with a Linear Operator
Abstract
:1. Introduction
2. Definitions and Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oros, G.I.; Oros, G. The notion of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Michig. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Univ. Apulensis. 2012, 3, 55–64. [Google Scholar]
- Oros, G.I.; Oros, G. Dominants and best dominants in fuzzy differential subordinations. Stud. Univ. Babes-Bolyai Math. 2012, 57, 239–248. [Google Scholar]
- Oros, G.I.; Oros, G. Briot-Bouquet fuzzy differential subordination. An. Univ. Oradea Fasc. Mat. 2012, 19, 83–87. [Google Scholar]
- Oros, G.I. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021, 70, 229–240. [Google Scholar] [CrossRef]
- Oros, G.I.; Dzitac, S. Applications of subordination chains and fractional integral in fuzzy differential subordinations. Mathematics 2022, 10, 1690. [Google Scholar] [CrossRef]
- Alb Lupas, A.; Catas, A. Fuzzy differential subordination of the Atangana–Baleanu fractional integral. Symmetry 2021, 13, 1929. [Google Scholar] [CrossRef]
- Alb Lupas, A. A note on special fuzzy differential subordinations using generalized Salagean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 2013, 15, 1476–1483. [Google Scholar]
- Alb Lupas, A.; Oros, G. On special fuzzy differential subordinations using Salagean and Ruscheweyh operators. Appl. Math. Comput. 2015, 261, 119–127. [Google Scholar]
- Venter, A.O. On special fuzzy differential subordination using Ruscheweyh operator. Analele Univ. Oradea Fasc. Mat. 2015, 22, 167–176. [Google Scholar]
- Es, A.H. On fuzzy differential subordination. Math. Moravica 2015, 19, 123–129. [Google Scholar]
- Majeed, A.H. Fuzzy differential subordinations properties of analytic functions involving generalized differential operator. Sci. Int. Lahore 2018, 30, 297–302. [Google Scholar]
- Ibrahim, R.W. On the subordination and superordination concepts with applications. J. Comput. Theor. Nanosci. 2017, 14, 2248–2254. [Google Scholar] [CrossRef]
- Altai, N.H.; Abdulkadhim, M.M.; Imran, Q.H. On first order fuzzy differential superordination. J. Sci. Arts 2017, 173, 407–412. [Google Scholar]
- Thilagavathi, K. Fuzzy subordination and superordination results for certain subclasses of analytic functions associated with Srivastava-Attitya operator. Int. J. Pure Appl. Math. 2018, 118, 921–929. [Google Scholar]
- Shah, S.A.; Ali, E.E.; Maitlo, A.A.; Abdeljawad, T.; Albalahi, A.M. Inclusion results for the class of fuzzy α-convex functions. AIMS Math. 2022, 8, 1375–1383. [Google Scholar] [CrossRef]
- Ali, E.E.; Cortez, M.V.; Shah, S.A.; Albalahi, A.M. Certain results on Fuzzy p-Valent Functions Involving the Linear Operator. Mathematics 2023, 11, 3968. [Google Scholar] [CrossRef]
- Shah, S.A.; Ali, E.E.; Catas, A.; Albalahi, A.M. On fuzzy differential subordination associated with q-difference operator. AIMS Math. 2023, 8, 6642–6650. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204, North-Holland Mathematical Studies. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman Scientific and Technical: Harlow, UK, 1993; Volume 301, Pitman Research Notes in Mathematics. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- El-Ashwah, R.M. Certain class of meromorphic univalent functions defined by an Erdelyi-Kober type integral operator. Open Sci. J. Math. Appl. 2015, 3, 7–13. [Google Scholar]
- Aqlan, E.; Jahangiri, J.M.; Kulkarni, S.R. Certain integral operators applied to meromorphic p-valent functions. J. Nat. Geom. 2003, 24, 111–120. [Google Scholar]
- Lashin, A.Y. On certain subclass of meromorphic functions associated with certain integral operators. Comput. Math Appl. 2010, 59, 524–531. [Google Scholar] [CrossRef]
- Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations. J. Math. Anal. Appl. 2004, 300, 505–520. [Google Scholar] [CrossRef]
- Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations. Integral Transforms Spec. Funct. 2005, 16, 647–659. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M.; Al-Zkeri, H.A. Applications of Briot-Bouquet differential subordination to certain classes of meromorphic functions. Arab J. Math. Sci. 2005, 12, 1–14. [Google Scholar]
- Uralegaddi, B.A.; Somanatha, C. New criteria for meromorphicstarlike univalent functions. Bull. Austral. Math. Soc. 1991, 43, 137–140. [Google Scholar] [CrossRef]
- El-Ashwah, R.M. A note on certain meromorphic p-valent functions. Appl. Math. Lett. 2009, 22, 1756–1759. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Alb Lupas, A. A note on special fuzzy differential subordinations using multiplier transformation and Ruscheweyh derivative. J. Comput. Anal. Appl. 2018, 25, 1116–1124. [Google Scholar]
- Bulboaca, T. Differential Subordinations and Superordinations: New Results; House of Scientific Boook Publ.: Cluj-Napoca, Romania, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.E.; Vivas-Cortez, M.; El-Ashwah, R.M.; Albalahi, A.M. Fuzzy Subordination Results for Meromorphic Functions Connected with a Linear Operator. Fractal Fract. 2024, 8, 308. https://doi.org/10.3390/fractalfract8060308
Ali EE, Vivas-Cortez M, El-Ashwah RM, Albalahi AM. Fuzzy Subordination Results for Meromorphic Functions Connected with a Linear Operator. Fractal and Fractional. 2024; 8(6):308. https://doi.org/10.3390/fractalfract8060308
Chicago/Turabian StyleAli, Ekram E., Miguel Vivas-Cortez, Rabha M. El-Ashwah, and Abeer M. Albalahi. 2024. "Fuzzy Subordination Results for Meromorphic Functions Connected with a Linear Operator" Fractal and Fractional 8, no. 6: 308. https://doi.org/10.3390/fractalfract8060308
APA StyleAli, E. E., Vivas-Cortez, M., El-Ashwah, R. M., & Albalahi, A. M. (2024). Fuzzy Subordination Results for Meromorphic Functions Connected with a Linear Operator. Fractal and Fractional, 8(6), 308. https://doi.org/10.3390/fractalfract8060308