Fuzzy Subordination Results for Meromorphic Functions Connected with a Linear Operator
Abstract
1. Introduction
2. Definitions and Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oros, G.I.; Oros, G. The notion of subordination in fuzzy sets theory. Gen. Math. 2011, 19, 97–103. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order-differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 298–305. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Michig. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Oros, G.I.; Oros, G. Fuzzy differential subordination. Acta Univ. Apulensis. 2012, 3, 55–64. [Google Scholar]
- Oros, G.I.; Oros, G. Dominants and best dominants in fuzzy differential subordinations. Stud. Univ. Babes-Bolyai Math. 2012, 57, 239–248. [Google Scholar]
- Oros, G.I.; Oros, G. Briot-Bouquet fuzzy differential subordination. An. Univ. Oradea Fasc. Mat. 2012, 19, 83–87. [Google Scholar]
- Oros, G.I. New fuzzy differential subordinations. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2021, 70, 229–240. [Google Scholar] [CrossRef]
- Oros, G.I.; Dzitac, S. Applications of subordination chains and fractional integral in fuzzy differential subordinations. Mathematics 2022, 10, 1690. [Google Scholar] [CrossRef]
- Alb Lupas, A.; Catas, A. Fuzzy differential subordination of the Atangana–Baleanu fractional integral. Symmetry 2021, 13, 1929. [Google Scholar] [CrossRef]
- Alb Lupas, A. A note on special fuzzy differential subordinations using generalized Salagean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 2013, 15, 1476–1483. [Google Scholar]
- Alb Lupas, A.; Oros, G. On special fuzzy differential subordinations using Salagean and Ruscheweyh operators. Appl. Math. Comput. 2015, 261, 119–127. [Google Scholar]
- Venter, A.O. On special fuzzy differential subordination using Ruscheweyh operator. Analele Univ. Oradea Fasc. Mat. 2015, 22, 167–176. [Google Scholar]
- Es, A.H. On fuzzy differential subordination. Math. Moravica 2015, 19, 123–129. [Google Scholar]
- Majeed, A.H. Fuzzy differential subordinations properties of analytic functions involving generalized differential operator. Sci. Int. Lahore 2018, 30, 297–302. [Google Scholar]
- Ibrahim, R.W. On the subordination and superordination concepts with applications. J. Comput. Theor. Nanosci. 2017, 14, 2248–2254. [Google Scholar] [CrossRef]
- Altai, N.H.; Abdulkadhim, M.M.; Imran, Q.H. On first order fuzzy differential superordination. J. Sci. Arts 2017, 173, 407–412. [Google Scholar]
- Thilagavathi, K. Fuzzy subordination and superordination results for certain subclasses of analytic functions associated with Srivastava-Attitya operator. Int. J. Pure Appl. Math. 2018, 118, 921–929. [Google Scholar]
- Shah, S.A.; Ali, E.E.; Maitlo, A.A.; Abdeljawad, T.; Albalahi, A.M. Inclusion results for the class of fuzzy α-convex functions. AIMS Math. 2022, 8, 1375–1383. [Google Scholar] [CrossRef]
- Ali, E.E.; Cortez, M.V.; Shah, S.A.; Albalahi, A.M. Certain results on Fuzzy p-Valent Functions Involving the Linear Operator. Mathematics 2023, 11, 3968. [Google Scholar] [CrossRef]
- Shah, S.A.; Ali, E.E.; Catas, A.; Albalahi, A.M. On fuzzy differential subordination associated with q-difference operator. AIMS Math. 2023, 8, 6642–6650. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier (North-Holland) Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204, North-Holland Mathematical Studies. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Longman Scientific and Technical: Harlow, UK, 1993; Volume 301, Pitman Research Notes in Mathematics. [Google Scholar]
- Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- El-Ashwah, R.M. Certain class of meromorphic univalent functions defined by an Erdelyi-Kober type integral operator. Open Sci. J. Math. Appl. 2015, 3, 7–13. [Google Scholar]
- Aqlan, E.; Jahangiri, J.M.; Kulkarni, S.R. Certain integral operators applied to meromorphic p-valent functions. J. Nat. Geom. 2003, 24, 111–120. [Google Scholar]
- Lashin, A.Y. On certain subclass of meromorphic functions associated with certain integral operators. Comput. Math Appl. 2010, 59, 524–531. [Google Scholar] [CrossRef]
- Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations. J. Math. Anal. Appl. 2004, 300, 505–520. [Google Scholar] [CrossRef]
- Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations. Integral Transforms Spec. Funct. 2005, 16, 647–659. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M.; Al-Zkeri, H.A. Applications of Briot-Bouquet differential subordination to certain classes of meromorphic functions. Arab J. Math. Sci. 2005, 12, 1–14. [Google Scholar]
- Uralegaddi, B.A.; Somanatha, C. New criteria for meromorphicstarlike univalent functions. Bull. Austral. Math. Soc. 1991, 43, 137–140. [Google Scholar] [CrossRef]
- El-Ashwah, R.M. A note on certain meromorphic p-valent functions. Appl. Math. Lett. 2009, 22, 1756–1759. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Alb Lupas, A. A note on special fuzzy differential subordinations using multiplier transformation and Ruscheweyh derivative. J. Comput. Anal. Appl. 2018, 25, 1116–1124. [Google Scholar]
- Bulboaca, T. Differential Subordinations and Superordinations: New Results; House of Scientific Boook Publ.: Cluj-Napoca, Romania, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, E.E.; Vivas-Cortez, M.; El-Ashwah, R.M.; Albalahi, A.M. Fuzzy Subordination Results for Meromorphic Functions Connected with a Linear Operator. Fractal Fract. 2024, 8, 308. https://doi.org/10.3390/fractalfract8060308
Ali EE, Vivas-Cortez M, El-Ashwah RM, Albalahi AM. Fuzzy Subordination Results for Meromorphic Functions Connected with a Linear Operator. Fractal and Fractional. 2024; 8(6):308. https://doi.org/10.3390/fractalfract8060308
Chicago/Turabian StyleAli, Ekram E., Miguel Vivas-Cortez, Rabha M. El-Ashwah, and Abeer M. Albalahi. 2024. "Fuzzy Subordination Results for Meromorphic Functions Connected with a Linear Operator" Fractal and Fractional 8, no. 6: 308. https://doi.org/10.3390/fractalfract8060308
APA StyleAli, E. E., Vivas-Cortez, M., El-Ashwah, R. M., & Albalahi, A. M. (2024). Fuzzy Subordination Results for Meromorphic Functions Connected with a Linear Operator. Fractal and Fractional, 8(6), 308. https://doi.org/10.3390/fractalfract8060308