Monotone Positive Radial Solution of Double Index Logarithm Parabolic Equations
Abstract
:1. Introduction
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
2. Maximum Principle
3. Averaging Effects
4. Application of Direct Moving Plane Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marchaud, A. Sur les dérivées et sur les différences des fonctions de variables réelles. J. Math. Pures Appl. 1927, 6, 337–425. [Google Scholar]
- Mainardi, F. Fractional calculus: Theory and applications. Mathematices 2018, 6, 145. [Google Scholar] [CrossRef]
- Gulgowski, J.; Stefański, T.P.; Rofimowicz, D. T On applications of elements modelled by fractional derivatives in circuit theory. Energies 2020, 13, 5768. [Google Scholar] [CrossRef]
- Rogosin, S.; Dubatovskaya, M. Letnikov vs. Marchaud: A survey on two prominent constructions of fractional derivatives. Mathematices 2017, 6, 3. [Google Scholar] [CrossRef]
- Bäuerle, N.; Desmettre, S. Portfolio Optimization in Fractional and Rough Heston Models, SIAM. J. Financ. Math. 2020, 11, 240–273. [Google Scholar] [CrossRef]
- Carpinteri, A.; Cornetti, P.; Sapora, A. Static–kinematic fractional operators for fractal and non-local solids. Angew. Math. Mech. 2010, 89, 207–217. [Google Scholar] [CrossRef]
- del-Castillo-Negrete, D.; Carreras, B.A.; Lynch, V.E. Nondiffusive transport in plasma turbulene: A fractional diffusion approach. Phys. Rev. Lett. 2005, 94, 065003. [Google Scholar] [CrossRef]
- Alberico, A.; Cianchi, A.; Pick, L.; Slavíková, L. Fractional Orlicz—Sobolev embeddings. J. Math. Pures Appl. 2021, 149, 216–253. [Google Scholar] [CrossRef]
- Comi, G.E.; Stefani, G. A distributional approach to fractional Sobolev spaces and fractional variation: Asymptotics I. Rev. Mat. Complut. 2023, 36, 491–569. [Google Scholar] [CrossRef]
- Bahrouni, S.; Ounaies, H.; Elfalah, O. Problems involving the fractional g-Laplacian with lack of compactness. J. Math. Phys. 2023, 64, 011512. [Google Scholar] [CrossRef]
- Bonder, J.F.; Salort, A.; Vivas, H. Interior and up to the boundary regularity for the fractional g-Laplacian: The convex case. Nonlinear Anal. 2022, 223, 113060. [Google Scholar] [CrossRef]
- Bahrouni, S.; Ounaies, H.; Salort, A. Variational eigenvalues of the fractional g-Laplacian. Complex Var. Elliptic Equ. 2023, 68, 1021–1044. [Google Scholar] [CrossRef]
- Bonder, J.F.; Salort, A.; Vivas, H. Global Hölder regularity for eigenfunctions of the fractional g-Laplacian. J. Math. Anal. Appl. 2023, 526, 127332. [Google Scholar] [CrossRef]
- Bonder, J.F.; Salort, A. Fractional order orlicz–sobolev spaces. J. Funct. Anal. 2019, 277, 333–367. [Google Scholar] [CrossRef]
- Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 2007, 32, 1245–1260. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, W. A Liouville type theorem for poly–harmonic Dirichlet problem in a half space. Adv. Math. 2012, 229, 2835–2867. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, J. Indefinite fractional elliptic problem and Liouville theorems. J. Differ. Equ. 2016, 260, 4758–4785. [Google Scholar] [CrossRef]
- Brändle, C.; Colorado, E.; de Pablo, A.; Sánchez, U. A concave–convex elliptic problem involving the fractional Laplacian. Proc. Roy. Soc. Edinburgh Sect. A 2013, 143, 39–71. [Google Scholar] [CrossRef]
- Chen, W.; Li, C.; Ou, B. Classification of solutions for an integral equation. Commun. Pur. Appl. Math. 2006, 59, 330–343. [Google Scholar] [CrossRef]
- Lu, G.; Zhu, J. Symmetry and regularity of extremals of an integral equation related to the Hardy—Sobolev inequality. Calc. Var. 2011, 42, 563–577. [Google Scholar] [CrossRef]
- Chen, W.; Li, C.; Ou, B. Qualitative properties of solutions for an integral equation. Disc. Cont. Dyn. Sys. 2005, 12, 347–354. [Google Scholar] [CrossRef]
- Ma, L.; Chen, D. A Liouville type theorem for an integral system. Commun. Pure Appl. Anal. 2006, 5, 855–859. [Google Scholar]
- Chen, W.; Li, C.; Li, Y. A drirect method of moving planes for the fractional Laplacian. Adv. Math. 2017, 308, 404–437. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Z. Symmetry of positive solutions for Choquard equations with fractional p-Laplacian. Nonlinear Anal. 2019, 182, 248–262. [Google Scholar] [CrossRef]
- Wang, G.; Ren, X.; Bai, Z.; Hou, W. Radial symmetry of standing waves for nonlinear fractional Hardy–Schrödinger equation. Appl. Math. Lett. 2019, 96, 131–137. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, W.; Ahmad, B.; Wang, G. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional p-Laplacian. Discrete Contin. Dyn. Syst. Ser. S. 2021, 14, 3851–3863. [Google Scholar]
- Zhang, L.; Nie, X. A direct method of moving planes for the Logarithmic Laplacian. Appl. Math. Lett. 2021, 118, 107141. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, W.; Nieto, J.J.; Wang, G. An anisotropic tempered fractional p-Laplacian model involving logarithmic nonlinearity. Evol. Equ. Control The. 2024, 13, 1–11. [Google Scholar] [CrossRef]
- Chen, W.; Ma, L. Qualitative properties of solutions for dual fractional nonlinear parabolic equations. J. Funct. Anal. 2023, 285, 110117. [Google Scholar] [CrossRef]
- Chen, W.; Wu, L. Liouville theorems for fractional parabolic equations. Adv. Nonlinear Stud. 2021, 21, 939–958. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhang, L. Monotone Positive Radial Solution of Double Index Logarithm Parabolic Equations. Fractal Fract. 2024, 8, 173. https://doi.org/10.3390/fractalfract8030173
Liu M, Zhang L. Monotone Positive Radial Solution of Double Index Logarithm Parabolic Equations. Fractal and Fractional. 2024; 8(3):173. https://doi.org/10.3390/fractalfract8030173
Chicago/Turabian StyleLiu, Mengru, and Lihong Zhang. 2024. "Monotone Positive Radial Solution of Double Index Logarithm Parabolic Equations" Fractal and Fractional 8, no. 3: 173. https://doi.org/10.3390/fractalfract8030173
APA StyleLiu, M., & Zhang, L. (2024). Monotone Positive Radial Solution of Double Index Logarithm Parabolic Equations. Fractal and Fractional, 8(3), 173. https://doi.org/10.3390/fractalfract8030173