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Abstract: This article mainly studies the double index logarithmic nonlinear fractional g-Laplacian
parabolic equations with the Marchaud fractional time derivatives ∂α

t . Compared with the classical
direct moving plane method, in order to overcome the challenges posed by the double non-locality of
space-time and the nonlinearity of the fractional g-Laplacian, we establish the unbounded narrow
domain principle, which provides a starting point for the moving plane method. Meanwhile, for the
purpose of eliminating the assumptions of boundedness on the solutions, the averaging effects of a
non-local operator are established; then, these averaging effects are applied twice to ensure that the
plane can be continuously moved toward infinity. Based on the above, the monotonicity of a positive
solution for the above fractional g-Laplacian parabolic equations is studied.

Keywords: double index logarithm nonlinear parabolic equations; monotonicity; fractional g-Laplacian;
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1. Introduction

In this paper, we mainly study the double index logarithmic fractional g-Laplacian
parabolic equations with the Marchaud fractional time derivatives
{

∂α
t u(z, t) + (−∆g)

su(z, t) = ln|uq(z, t) + 1|+ ln|up(z, t) + 1|, in Rn
+ ×R,

u(z, t) = 0, in
(
Rn\Rn

+

)
×R,

(1)

where Rn
+ := {z ∈ Rn | z1 > 0} represents the right half space and p, q ≥ 1.

The Marchaud fractional time derivative ∂α
t is defined as

∂α
t u(z, t) := Cα

∫ t

−∞

u(z, t)− u(z, τ)

(t− τ)1+α
dτ, for order α ∈ (0, 1), (2)

where Cα = α
Γ(1−α)

represents the normalized positive constant. To make sense of the

integral in Equation (2), let u(z, t) ∈ C1(R)× L−α (R), where

L−α (R) := {u ∈ L1
loc(R)|

∫ t

−∞

|u(z, ρ)|
1 + |ρ|1+α

dρ < +∞ for any t ∈ R}.

The Marchaud fractional time derivative was introduced by Marchaud in 1927 [1].
The time non-locality explains the historical dependence introduced in dynamics due
to abnormally large waiting times. The introduction of the Marchaud fractional time
derivative can better describe some complex phenomena in the real world, such as nonlinear
effects of media and memory effects. The background and properties of the Marchaud
fractional time derivative can be referred to in [2–4]. This fractional time derivative is widely
used in various fields. In finance, a fractional time derivative can be used to solve the
optimal portfolio problem of investors [5]. In continuum mechanics, a fractional operator
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has a clear mechanical explanation by the definition of fractional derivatives [6]. In physical
phenomena, it is used to describe magneto-thermoelastic heat conduction [7].

Among the non-local nonlinear operators with non-standard growth that occur nat-
urally in fractional Orlicz–Sobolev spaces, the most notable of which is the fractional
g-Laplacian. The spatial non-locality of the fractional g-Laplacian explains that the be-
havior of a point in the system is affected by a distant position in space; that is, there are
non-local effects in the system. More background on the fractional g-Laplacian can be found
in references [8,9]. The fractional g-Laplacian (−∆g)

s has received increasing attention in
recent years because it can simulate the non-power behavior of non-local problems. For
some interesting results, we can refer to [10–13] and the references therein.

Define fractional g-Laplacian (−∆g)
s [14],

(−∆g)
su(z, t) := P.V.

∫

Rn
g
(

u(z, t)− u(ϑ, t)
|z− ϑ|s

)
dϑ

|z− ϑ|n+s , (3)

where P.V. represents the integral principal value and g = G′ corresponds to the derivative
of a Young function, G. That is,

G(t) =
∫ t

0
g(τ)dτ.

The properties of g are as follows:

(1) g(t) > 0 for t > 0;
(2) g(a) + g(b) ≥ cg(a + b), where c > 0 is a constant;
(3) g(a)− g(b) ≥ dg(a− b), where d > 0 is a constant;
(4) g is nondecreasing on (0, ∞);
(5) g(−t) = −g(t);
(6) g′ > 0, since G is convex.

Because of the non-locality of the fractional g-Laplacian (−∆g)
s, the behavior of u at

infinity needs to be properly controlled when dealing with the operator. We will define

Lg(Rn) :=

{
u ∈ L1

loc(R
n) |

∫

Rn
g
( |u(z, t)|

1 + |z|s
)

dz
1 + |z|n+s < ∞

}
.

This guarantees that the operator is well defined. In addition, when G(t) = t2, this
corresponds to the fractional Laplacian. When G(t) = tp, it is the fractional p-Laplacian.

The moving plane method introduced by Alexandrof is mainly used to study local
elliptic and parabolic equations. But due to the non-local property of the fractional Laplace
operator, the traditional moving plane method is not suitable for pseudo-differential equa-
tions containing a fractional Laplace operator. In order to resolve this dilemma, Caffarelli
and Silvestr [15] developed an extended method for converting non-local questions into
local questions in high-dimensional spaces, which has been successfully applied to equa-
tions with fractional Laplacian (see [16–18] and the references therein). Alternatively, by
transforming a given pseudo-differential equation into its equivalent integral equation, the
properties of the solutions are studied by applying the moving plane method in the integral
form and the regularity lifting. The results of this method can be referred to in [19–22].
However, when employing the extension method or the corresponding integral method,
it is necessary to add some additional conditions or restrictions. After that, in [23], Chen,
Li, and Li made a further breakthrough in this field by introducing a method of moving
the plane directly, thereby eliminating these limitations and simplifying the proof process.
Subsequently, this effective direct method has been extensively applied in analyzing the
symmetries, monotonicity, and nonexistence of various elliptic equations and systems
(see [24–28] and the references therein). But due to the difficulty caused by double non-
locality in space-time, the study of the geometric properties of the solutions for space-time
fractional nonlinear parabolic equations is very scarce. Until 2023, Chen and Li studied the
monotonicity of the solutions for dual fractional nonlinear parabolic equations by using
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the direct moving plane method in [29]. Inspired by the above ideas, we will investigate
a monotone positive radial solution of the double index logarithmic nonlinear fractional
g-Laplacian parabolic Equations (1) with the Marchaud fractional time derivatives ∂α

t . We
successfully address the challenges arising from the double non-locality of space-time and
the nonlinearity of the fractional g-Laplacian in this equation.

In contrast to the previous approach of taking limits along a subsequence of {wΛk},
we utilize the method of average effects to eliminate the assumption of boundedness on the
solution. We believe that this method will become a valuable tool in studying unbounded
solution sequences. The structure of this article is as follows: In Section 2, we mainly prove
the narrow region principle of the antisymmetric function and some maximum principles,
which provides a starting point for the moving plane method. In Section 3, for the purpose
of eliminating the assumptions of boundedness on the solutions, the averaging effects of
the non-local operator are established. In Section 4, the main result of this paper is proved
by using the direct moving plane method; that is, the positive solution of Equation (1) is
strictly increasing in the z1-direction for any t ∈ R.

Notations. The z1-direction can be any direction.

TΛ := {z = (z1, z
′
) ∈ Rn | z1 = Λ for Λ ∈ R}

is the moving planes.

ΣΛ := {z ∈ Rn | z1 < Λ} and ΩΛ := {z ∈ Rn
+ | z1 < Λ}

are the regions to the left of the hyperplane TΛ in Rn and in Rn
+, respectively.

zΛ := (2Λ− z1, z2, · · · , zn)

is the reflection point of z about TΛ. u(z, t) is a solution of (1) and uΛ(z, t) := u(zΛ, t).
Denote

wΛ(z, t) := uΛ(z, t)− u(z, t).

2. Maximum Principle

In this section, we mainly prove the following four theorems: the four theorems
are the narrow region principle (Theorem 1) and maximum principle (Theorem 2) of an
antisymmetric function on an unbounded domain, and the maximum principle (Theorem 3)
and maximum principle of an antisymmetric function (Theorem 4) on a bounded domain.
From this point on, C represents a constant that may differ between each line, and only
the related dependencies are explained later. And Ci is the positive constant throughout
the article.

Theorem 1. Suppose that Ω is an unbounded narrow region contained within {z ∈ ΣΛ|Λ− 2l <
z1 < Λ} for some small l and

wΛ ∈ (C1,1
loc(Ω) ∩ Lg(Rn))× (C1(R) ∩ L−α (R))

is lower semi-continuous with respect to z on Ω.
If

wΛ(z, t) ≥ −C(1 + |z|ν) f or some 0 < ν < 2s (4)

and




∂α
t wΛ(z, t) + (−∆g)

suΛ(z, t)− (−∆g)
su(z, t) =

(
qξ

q−1
1 (z,t)

ξ
q
1(z,t)+1

+
pξ

p−1
2 (z,t)

ξ
p
2 (z,t)+1

)
wΛ(z, t),

(z, t) ∈ Ω×R,
wΛ(z, t) ≥ 0, (z, t) ∈ (ΣΛ\Ω)×R,
wΛ(z, t) = −wΛ(zΛ, t), (z, t) ∈ ΣΛ ×R.

(5)
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where ξ1(z, t) and ξ2(z, t) fall in-between uΛ(z, t) and u(z, t), then

wΛ(z, t) ≥ 0, in ΣΛ ×R, (6)

for l small enough. Moreover, if wΛ(z0, t0) = 0 for some point (z0, t0) ∈ Ω×R, then

wΛ(z, t) ≡ 0, in Rn × (−∞, t0]. (7)

Proof. To obtain Equation (6), we will use proof by contradiction. Since condition (4) may
cause wΛ(z, t) to reach negative infinity when |x| → ∞ , then wΛ(z, t) may not reach the
minimum in z. To solve this difficulty, define

h(z) :=

[(
1− (z1 − (Λ− l))2

l2

)s

+

+ 1

](
1 +

∣∣z′
∣∣2
) θ

2

for some ν < θ < 2s. Hence, we obtain

lim
|z|→∞

wΛ(z, t) := lim
|z|→∞

wΛ(z, t)
h(z)

≥ 0. (8)

Assume that there exists a point z ∈ Ω such that wΛ(z, t) < 0 for every fixed t ∈ R;
then, there must be z(t) ∈ Ω such that

wΛ(z(t), t) = min
z∈Ω

wΛ(z, t) < 0. (9)

By Equation (4), ν < θ, and the definition of wΛ(z, t), it follows that wΛ(z(t), t)
is bounded.

Therefore, if Equation (6) does not hold, there must exist a constant m > 0 such that

inf
Ω×R

wΛ(z, t) = inf
R

wΛ(z(t), t) = −m < 0. (10)

This means that there is a sequence, {(zk, tk)} ⊂ Ω×R, and it holds

wΛ(zk, tk) = −mk → −m as k→ ∞.

Let εk := m−mk. It is obvious that εk > 0 and εk → 0 as k→ ∞ .
Because the minimum of wΛ(z(t), t) may not be reached when t ∈ R, to address this

challenge, let
vk(z, t) := wΛ(z, t)− εkηk(t),

where
ηk(t) = η(t− tk) ∈ C∞

0 (−2 + tk, 2 + tk),

represents a smooth cut-off function, satisfying

ηk(t)





= 1, t ∈ [−1 + tk, 1 + tk],
∈ [0, 1], t ∈ (−2 + tk,−1 + tk) ∪ (1 + tk, 2 + tk),
= 0, t /∈ (−2 + tk, 2 + tk).

We have
vk(zk, tk) = wΛ(zk, tk)− εk = −mk −m + mk = −m.

Consequently, there exists (zk, tk) ∈ Ω× (−2 + tk, 2 + tk) such that

−m− εk ≤ vk(zk, tk) = inf
Ω×R

vk(z, t) ≤ −m. (11)
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It follows that
−m ≤ wΛ(zk, tk) ≤ −m + εk = −mk < 0. (12)

By direct calculation, we have

∂α
t vk(zk, tk) = Cα

∫ tk

−∞

vk(zk, tk)− vk(zk, τ)

(tk − τ)
1+α

dτ ≤ 0.

By Lemma 5.1 in [29] and the definition of vk(z, t), it follows that

∂α
t wΛ(zk, tk) ≤ εk∂α

t ηk(tk) ≤ Cεk, (13)

here, C is a positive constant. In turn, by the properties of g, and Equations (5), (9), and (12),
|zk − ϑ| < |zk − ϑΛ| and h(ϑ) > h(ϑΛ) for ϑ ∈ ΣΛ, and we have

(−∆g)
suΛ(zk, tk)− (−∆g)

su(zk, tk)

= P.V.
∫

Rn

[
g

(
uΛ(zk, tk)− uΛ(ϑ, tk)

|zk−ϑ|s

)
− g

(
u(zk, tk)− u(ϑ, tk)

|zk−ϑ|s

)]
dϑ

|zk−ϑ|n+s

= P.V.
∫

Rn

g′
(
ξ
(
ϑ, tk

))(
wΛ

(
zk, tk

)
− wΛ

(
ϑ, tk

))

∣∣∣zk − ϑ
∣∣∣
n+2s dϑ

= P.V.
∫

Rn

g′
(
ξ
(
ϑ, tk

))(
wΛ

(
zk, tk

)
h
(

zk
)
− wΛ

(
zk, tk

)
h(ϑ) + wΛ

(
zk, tk

)
h(ϑ)− wΛ

(
ϑ, tk

)
h(ϑ)

)

∣∣∣zk − ϑ
∣∣∣
n+2s dϑ

= C1P.V.
∫

Rn

h(ϑ)
(

wΛ

(
zk, tk

)
− wΛ

(
ϑ, tk

))

∣∣∣zk − ϑ
∣∣∣
n+2s dϑ + C2wΛ(zk, tk)(−∆)sh(zk)

≤ C1

∫

ΣΛ

h(ϑ)wΛ

(
zk, tk

)
− wΛ

(
ϑ, tk

)

∣∣∣zk − ϑΛ
∣∣∣
n+2s dϑ + C1

∫

ΣΛ

h
(
ϑΛ)wΛ

(
zk, tk

)
+ wΛ

(
ϑ, tk

)

∣∣∣zk − ϑΛ
∣∣∣
n+2s dϑ

+ C2wΛ(zk, tk)(−∆)sh(zk)

≤ C1

∫

ΣΛ

2h
(
ϑΛ)wΛ

(
zk, tk

)

∣∣∣zk − ϑΛ
∣∣∣
n+2s dϑ + C2wΛ(zk, tk)(−∆)sh(zk)

≤ C2wΛ(zk, tk)(−∆)sh(zk),

where
uΛ(zk, tk)− uΛ(ϑ, tk)

|zk−ϑ|s
< ξ

(
ϑ, tk

)
<

u(zk, tk)− u(ϑ, tk)

|zk−ϑ|s

and C1, C2 > 0. Then, by Lemma 2.1 in [30], we can show that there is a positive constant
C3 such that

(−∆)sh(z)
h(z)

≥ C3

l2s for all Λ− 2l < z1 < Λ with sufficently small l.

We have

(−∆g)
suΛ(zk, tk)− (−∆g)

su(zk, tk) ≤
C2C3

l2s h(zk)wΛ(zk, tk). (14)

Combining Equations (5), (13), and (14) and the boundedness of
(

qξ
q−1
1 (z,t)

ξ
q
1(z,t)+1

+
pξ

p−1
2 (z,t)

ξ
p
2 (z,t)+1

)

from above, we obtain
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−C2C3

l2s mkh(zk) ≥ C2C3

l2s h(zk)wΛ(zk, tk)

≥ (−∆g)
suΛ(zk, tk)− (−∆g)

su(zk, tk)

= −∂α
t wΛ(zk, tk) +




qξ
q−1
1

(
zk, tk

)

ξ
q
1

(
zk, tk

)
+ 1

+
pξ

p−1
2

(
zk, tk

)

ξ
p
2

(
zk, tk

)
+ 1


wΛ(zk, tk)

= −h(zk)∂α
t wΛ(zk, tk) +




qξ
q−1
1

(
zk, tk

)

ξ
q
1

(
zk, tk

)
+ 1

+
pξ

p−1
2

(
zk, tk

)

ξ
p
2

(
zk, tk

)
+ 1


h(zk)wΛ(zk, tk)

≥ −Cεkh(zk)− Cmh(zk).

We deduce that

C2C3

l2s ←
C2C3

l2s
mk
m
≤ Cεk

m
+ C → C as k→ ∞.

We obtain the contradiction for l that is small enough. Then, Equation (6) is verified.
Next, we prove Equation (7). As a consequence of Equation (6), we can conclude that

wΛ(z0, t0) = min
ΣΛ×R

wΛ(z, t) = 0.

If wΛ(z, t0) ̸≡ 0 in ΣΛ, by calculation, we obtain

∂α
t wΛ(z0, t0) = −Cα

∫ t0

−∞

wΛ(z0, τ)

(t0 − τ)1+α
dτ ≤ 0

and

(−∆g)
suΛ(z0, t0)− (−∆g)

su(z0, t0)

= P.V.
∫

Rn

[
g
(

uΛ(z0, t0)− uΛ(ϑ, t0)

|z0−ϑ|s
)
− g
(

u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s
)]

dϑ

|z0−ϑ|n+s

= P.V.
∫

ΣΛ

[
g
(

uΛ(z0, t0)− uΛ(ϑ, t0)

|z0−ϑ|s
)
− g
(

u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s
)]

dϑ

|z0−ϑ|n+s

+
∫

ΣΛ

[
g
(

uΛ(z0, t0)− u(ϑ, t0)

|z0 − ϑΛ|s
)
− g
(

u(z0, t0)− uΛ(ϑ, t0)

|z0 − ϑΛ|s
)]

dϑ

|z0 − ϑΛ|n+s

=: I1 + I2,

here,

I1 :=
∫

ΣΛ

[
g

((
uΛ(z0, t0)− uΛ(ϑ, t0)

)

|z0−ϑ|s
)
− g

((
u(z0, t0)− u(ϑ, t0)

)

|z0−ϑ|s
)]

(
1

|z0−ϑ|n+s −
1

|z0 − ϑΛ|n+s

)
dϑ

(15)

and

I2 :=
∫

ΣΛ

[
g
(

uΛ(z0, t0)− u(ϑ, t0)

|z0 − ϑΛ|s
)
− g
(

u(z0, t0)− uΛ(ϑ, t0)

|z0 − ϑΛ|s
)

+g
(

uΛ(z0, t0)− uΛ(ϑ, t0)

|z0−ϑ|s
)
− g
(

u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s
)]

dϑ

|z0 − ϑΛ|n+s .
(16)

Because of
1

|z0−ϑ|n+α −
1

|z0 − ϑΛ|n+α
> 0
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and

wΛ(z0, t0)− wΛ(ϑ, t0) = uΛ(z0, t0)− uΛ(ϑ, t0)− (u(z0, t0)− u(ϑ, t0)) < 0,

we obtain

g

((
uΛ(z0, t0)− uΛ(ϑ, t0)

)

|z0−ϑ|s
)
− g

((
u(z0, t0)− u(ϑ, t0)

)

|z0−ϑ|s
)

< 0,

it follows that I1 < 0. For the other term, we have

I2 ≤ wΛ(z0, t0)
∫

ΣΛ

g′(ζ1(ϑ, t)) + g′(ζ2(ϑ, t))
|z0 − ϑΛ|n+2s dϑ = 0,

with

ζ1(ϑ, t) between
uΛ(z0, t0)− u(ϑ, t0)

|z0 − ϑΛ|s and
u(z0, t0)− uΛ(ϑ, t0)

|z0 − ϑΛ|s
and

ζ2(ϑ, t) between
uΛ(z0, t0)− uΛ(ϑ, t0)

|z0−ϑ|s and
u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s .

Combining I1 < 0 and I2 = 0, we obtain

(−∆g)
suΛ(z0, t0)− (−∆g)

su(z0, t0) < 0,

then
∂α

t wΛ(z0, t0) + (−∆g)
suΛ(z0, t0)− (−∆g)

su(z0, t0) < 0.

This contradiction aligns with Equation (5). It holds that wΛ(z, t0) ≡ 0 in ΣΛ. In
addition, by the antisymmetry of wΛ(z, t) in z, we have

wΛ(z, t0) ≡ 0 in Rn.

Therefore, for z ∈ ΣΛ such that wΛ(z, t) ̸≡ 0 in (−∞, t0), by employing similar
estimates as above, we obtain

∂α
t wΛ(z, t0) = −Cα

∫ t0

−∞

wΛ(z, τ)

(t0 − τ)1+α
dτ < 0

and
(−∆g)

suΛ(z, t0)− (−∆g)
su(z, t0) = 0,

which also means that

∂α
t wΛ(z, t0) + (−∆g)

suΛ(z, t0)− (−∆g)
su(z, t0) < 0.

This contradiction aligns with Equation (5). So, wΛ(z, t) ≡ 0 in ΣΛ × (−∞, t0]. Again,
through the antisymmetry of wΛ(z, t) for z, we can conclude that

wΛ(z, t) ≡ 0 in Rn × (−∞, t0].

This completes the proof. □

Theorem 2. Assume that Ω ⊂ ΣΛ is an unbounded domain of finite width in the direction of
z1 and

wΛ ∈ (C1,1
loc(Ω) ∩ Lg(Rn))× (C1(R) ∩ L−α (R))

is lower semi-continuous with respect to z on Ω.
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If
wΛ(z, t) ≥ −C(1 + |z|ν) f or some 0 < ν < 2s,

and




∂α
t wΛ(z, t) + (−∆g)

suΛ(z, t)− (−∆g)
su(z, t) =

(
qξ

q−1
1 (z,t)

ξ
q
1(z,t)+1

+
pξ

p−1
2 (z,t)

ξ
p
2 (z,t)+1

)
wΛ(z, t),

in ∈ Ω×R,
wΛ(z, t) ≥ 0, in (ΣΛ\Ω)×R,
wΛ(z, t) = −wΛ(zΛ, t), in ΣΛ ×R.

(17)

where ξ1(z, t) and ξ2(z, t) fall in-between uΛ(z, t) and u(z, t),
then

wΛ(z, t) ≥ 0 f or (z, t) ∈ ΣΛ ×R. (18)

Moreover, if wΛ(z0, t0) = 0 for a point, (z0, t0) ∈ Ω×R, then

wΛ(z, t) ≡ 0 f or (z, t) ∈ Rn × (−∞, t0].

Proof. Because Ω is an unbounded domain of finite width in the direction of z1, assume
that Ω is contained in {z ∈ ΣΛ|Λ− 2a < z1 < Λ} for some a > 0. Here, we choose the
auxiliary functions

h(z) :=

[(
1− (z1 − (Λ− a))2

a2

)s

+

+ 1

](
1 +

∣∣bz′
∣∣2
) θ

2

for some ν < θ < 2s. Here, b is a small enough positive constant and depends on a. For any
z ∈ Ω and some constant C3 > 0, we have

(−∆)sh(z)
h(z)

≥ C3

l2s .

It is clear from the calculations that we can obtain qξ
q−1
1 (z,t)

ξ
q
1(z,t)+1

+
pξ

p−1
2 (z,t)

ξ
p
2 (z,t)+1

≤ p + q. Similar

to the notation and computation in Theorem 1 proofs, if Equation (18) is false, we can
finally derive

C2C3

a2s ←
C2C3

a2s
mk
m
≤ Cεk

m
+ p + q→ p + q,

as k→ ∞ . By the arbitrariness of a, take a2s < C2C3
p+q ; then, it is a contradiction. Therefore,

the validity of Equation (18) is confirmed. The proof is complete. □

Theorem 3. Assume that Ω ⊂ Rn is a bounded domain, [t1, t2] ⊂ R is a finite interval, and

u(z, t) ∈ (C1,1
loc(Ω) ∩ Lg(Rn))× (C1([t1, t2]) ∩ L−α (R))

is lower semi-continuous with respect to z on Ω. If





∂α
t u(z, t) + (−∆g)

su(z, t) ≥ 0, (z, t) ∈ Ω× (t1, t2],
u(z, t) ≥ 0, (z, t) ∈ Ωc × (t1, t2],
u(z, t) ≥ 0, (z, t) ∈ Ω× (−∞, t1],

(19)

then u(z, t) ≥ 0 in Ω× (t1, t2].
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Proof. If the conclusion is invalid, there exists (z0, t0) ∈ Ω× (t1, t2] such that

u(z0, t0) = min
Ω×(t1,t2]

u(z, t) < 0.

By Equation (19), we can obtain

∂α
t u(z0, t0) + (−∆g)

su(z0, t0)

=Cα

∫ t0

−∞

u(z0, t0)− u(z0, τ)

(t0 − τ)1+α
dτ + P.V.

∫

Rn
g
(

u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s
)

dϑ

|z0−ϑ|n+s

=Cα

∫ t1

−∞

u(z0, t0)− u(z0, τ)

(t0 − τ)1+α
dτ + Cα

∫ t0

t1

u(z0, t0)− u(z0, τ)

(t0 − τ)1+α
dτ

+P.V.
∫

Ω
g
(

u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s
)

dϑ

|z0−ϑ|n+s +
∫

Ωc
g
(

u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s
)

dϑ

|z0−ϑ|n+s

<0.

This is inconsistent with Equation (19). So, the proof is completed. □

Theorem 4. Assume that Ω ⊂ ΣΛ is a bounded domain, [t1, t2] ⊂ R is a finite interval, and

wΛ ∈ (C1,1
loc(Ω) ∩ Lg(Rn))× (C1([t1, t2]) ∩ L−α (R))

is lower semi-continuous for z in Ω. If




∂α
t wΛ(z, t) + (−∆g)

suΛ(z, t)− (−∆g)
su(z, t) ≥ 0, (z, t) ∈ Ω× (t1, t2],

wΛ(z, t) ≥ 0, (z, t) ∈ (ΣΛ\Ω)× (t1, t2],
wΛ(z, t) ≥ 0, (z, t) ∈ Ω× (−∞, t1],
wΛ(z, t) = −wΛ(zΛ, t), (z, t) ∈ ΣΛ ×R,

(20)

then wΛ(z, t) ≥ 0 in Ω× (t1, t2].

Proof. If the conclusion is not valid, there exists (z0, t0) ∈ Ω× (t1, t2] such that

wΛ(z0, t0) = min
ΣΛ×(t1,t2]

wΛ(z, t) < 0.
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By the antisymmetry of wΛ(z, t) in z and (2.17), we have

∂α
t wΛ(z0, t0) + (−∆g)

suΛ(z0, t0)− (−∆g)
su(z0, t0)

= Cα

∫ t0

−∞

wΛ(z0, t0)− wΛ(z0, τ)

(t0 − τ)1+α
dτ + P.V.

∫

Rn

[
g
(

uΛ(z0, t0)− uΛ(ϑ, t0)

|z0−ϑ|s
)

−g
(

u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s
)]

dϑ

|z0−ϑ|n+s

= Cα

∫ t1

−∞

wΛ(z0, t0)− wΛ(z0, τ)

(t0 − τ)1+α
dτ + Cα

∫ t0

t1

wΛ(z0, t0)− wΛ(z0, τ)

(t0 − τ)1+α
dτ

+ P.V.
∫

ΣΛ

[
g
(

uΛ(z0, t0)− uΛ(ϑ, t0)

|z0−ϑ|s
)
− g
(

u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s
)]

dϑ

|z0−ϑ|n+s

+ P.V.
∫

Σc
Λ

[
g
(

uΛ(z0, t0)− uΛ(ϑ, t0)

|z0−ϑ|s
)
− g
(

u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s
)]

dϑ

|z0−ϑ|n+s

< P.V.
∫

ΣΛ

[
g
(

uΛ(z0, t0)− uΛ(ϑ, t0)

|z0−ϑ|s
)
− g
(

u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s
)]

dϑ

|z0−ϑ|n+s

+ P.V.
∫

ΣΛ

[
g
(

uΛ(z0, t0)− u(ϑ, t0)

|z0 − ϑΛ|s
)
− g
(

u(z0, t0)− uΛ(ϑ, t0)

|z0 − ϑΛ|s
)]

dϑ

|z0 − ϑΛ|n+s

= I1 + I2

< 0,

with I1 and I2 being Equations (15) and (16). Since wΛ(z0, t0) < 0, we obtain I1 < 0 and
I2 < 0.

Obviously, the above inequality is contradictory to inequality (20). Then, we have
successfully completed the proof. □

3. Averaging Effects

In this section, to prove our main results, we introduce averaging effects (Theorem 5)
and averaging effects of antisymmetric functions (Theorem 6) for double non-local opera-
tors ∂α

t + (−∆g)
s.

Theorem 5. Let D ⊂ Rn. For any z0 ∈ Rn and some t0 ∈ R, assume that there exists a radius
r > 0, satisfying Br(z0) ∩ D = ∅ as shown in Figure 1, and

u(z, t) ≥ C0 > 0 f or (z, y) ∈ D× (t0 − r
2s
α , t0 + r

2s
α ]. (21)
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+ P.V.
∫

ΣΛ

[
g
(

uΛ(z0, t0)− uΛ(ϑ, t0)

|z0 − ϑ|s
)
− g
(

u(z0, t0)− u(ϑ, t0)

|z0 − ϑ|s
)]

dϑ

|z0 − ϑ|n+s

+ P.V.
∫

Σc
Λ

[
g
(

uΛ(z0, t0)− uΛ(ϑ, t0)

|z0 − ϑ|s
)
− g
(

u(z0, t0)− u(ϑ, t0)

|z0 − ϑ|s
)]

dϑ

|z0 − ϑ|n+s

<P.V.
∫

ΣΛ

[
g
(

uΛ(z0, t0)− uΛ(ϑ, t0)

|z0 − ϑ|s
)
− g
(

u(z0, t0)− u(ϑ, t0)

|z0 − ϑ|s
)]

dϑ

|z0 − ϑ|n+s

+ P.V.
∫

ΣΛ

[
g
(

uΛ(z0, t0)− u(ϑ, t0)

|z0 − ϑΛ|s
)
− g
(

u(z0, t0)− uΛ(ϑ, t0)

|z0 − ϑΛ|s
)]

dϑ

|z0 − ϑΛ|n+s

=I1 + I2

<0,

with I1 and I2 being Equations (15) and (16). Since wΛ(z0, t0) < 0, we obtain I1 < 0 and
I2 < 0.

Obviously, the above inequality is contradictory to inequality (20). Then, we have
successfully completed the proof.

3. Averaging Effects

In this section, to prove our main results, we introduce averaging effects (Theorem 5)
and averaging effects of antisymmetric functions (Theorem 6) for double non-local opera-
tors ∂α

t + (−∆g)s.

Theorem 5. Let D ⊂ Rn. For any z0 ∈ Rn and some t0 ∈ R, assume that there exists a radius
r > 0, satisfying Br(z0) ∩ D̄ = ∅ as shown in Figure 1, and

u(z, t) ≥ C0 > 0 f or (z, y) ∈ D× (t0 − r
2s
α , t0 + r

2s
α ]. (21)

Suppose that

u(z, t) ∈ (C1,1
loc(Br(z0)) ∩ Lg(Rn))× (C1([t0 − r

2s
α , t0 + r

2s
α ]) ∩ L−α (R))

is lower semi-continuous for z in Br(z0) and satisfies




∂α
t u(z, t) + (−∆g)su(z, t) ≥ −ε, in Br(z0)× (t0 − r

2s
α , t0 + r

2s
α ],

u(z, t) ≥ 0, in Bc
r(z0)× (t0 − r

2s
α , t0 + r

2s
α ],

u(z, t) ≥ 0, in Br(z0)× (−∞, t0 − r
2s
α ],

(22)

for some small enough positive constant ε. Consequently, there exists a positive constant C1 such
that

u(z0, t0) ≥ C1 > 0.

Figure 1. The positional relationship between the region D and the ball Br(z0) in Rn.

Proof. By constructing a sub-solution, we can derive a lower bound estimation. Let

Ψ(z, t) := φ(z)η(t) = C

(
1−

∣∣∣∣
z− z0

r

∣∣∣∣
2)s

+

η(t).

Figure 1. The positional relationship between the region D and the ball Br(z0) in Rn.

Suppose that

u(z, t) ∈ (C1,1
loc(Br(z0)) ∩ Lg(Rn))× (C1([t0 − r

2s
α , t0 + r

2s
α ]) ∩ L−α (R))
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is lower semi-continuous for z in Br(z0) and satisfies





∂α
t u(z, t) + (−∆g)

su(z, t) ≥ −ε, in Br(z0)× (t0 − r
2s
α , t0 + r

2s
α ],

u(z, t) ≥ 0, in Bc
r(z0)× (t0 − r

2s
α , t0 + r

2s
α ],

u(z, t) ≥ 0, in Br(z0)× (−∞, t0 − r
2s
α ],

(22)

for some small enough positive constant ε. Consequently, there exists a positive constant C1 such that

u(z0, t0) ≥ C1 > 0.

Proof. By constructing a sub-solution, we can derive a lower bound estimation. Let

Ψ(z, t) := φ(z)η(t) = C

(
1−

∣∣∣∣
z− z0

r

∣∣∣∣
2)s

+

η(t).

Here, η(t) represents a smooth cut-off function, satisfying

η(t)





= 1, t ∈ [− r
2s
α

2 + t0, r
2s
α

2 + t0],

∈ [0, 1], t ∈ (−r
2s
α + t0,− r

2s
α

2 + t0) ∪ ( r
2s
α

2 + t0, r
2s
α + t0),

= 0, t /∈ (−r
2s
α + t0, r

2s
α + t0).

By choosing a suitable positive constant C, it follows that
{
(−∆)s φ(z) = 1

r2s , in Br(z0),
φ(z) = 0, in Bc

r(z0).
(23)

Let
u(z, t) := u(z, t)χD(z) + δΨ(z, t),

where

χD(z) =
{

1, z ∈ D,
0, z /∈ D,

and δ is a positive constant that will be determined at a later time.
Next, we will prove that u(z, t) is a sub-solution of u(z, t) in Br(z0)× (t0 − r

2s
α , t0 + r

2s
α ].

Combining Equations (21)–(23), Br(z0) ∩ D = ∅, the properties of g, and Corollary 5.2
in [29], for (z, t) ∈ Br(z0)× (t0 − r

2s
α , t0 + r

2s
α ], we obtain

∂α
t (u(z, t)− u(z, t)) + (−∆g)

su(z, t)− (−∆g)
su(z, t)

≥−ε− δφ(z)∂α
t η(t)− P.V.

∫

Rn
g
(

δΨ(z, t)− u(ϑ, t)
|z− ϑ|s

)
1

|z− ϑ|n+s dϑ

≥−ε− δφ(z)∂α
t η(t)− (−∆g)

s(δΨ(z, t))

+P.V.
∫

D

[
g
(

δΨ(z, t)
|z− ϑ|s

)
− g
(

δΨ(z, t)− u(ϑ, t)
|z− ϑ|s

)]
1

|z− ϑ|n+s dϑ

≥−ε− δφ(z)∂α
t η(t)− C2P.V.

∫

Rn

[
g
(

δΨ(z, t)
|z− ϑ|s

)
− g
(

δΨ(ϑ, t)
|z− ϑ|s

)]
1

|z− ϑ|n+s dϑ

+
∫

D

g′(ζ1(ϑ, t))u(ϑ, t)

|z− ϑ|n+2s dϑ

≥−ε− δφ(z)∂α
t η(t)− C2δη(t)P.V.

∫

Rn

g′(ζ2(ϑ, t))(φ(z)− φ(ϑ))

|z− ϑ|n+2s dϑ + C3

≥−ε− δC4

r2s + C3,
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where

ζ1(ϑ, t) between
δΨ(z, t)
|z− ϑ|s and

δΨ(z, t)− u(ϑ, t)
|z− ϑ|s

and

ζ2(ϑ, t) between
δΨ(z, t)
|z− ϑ|s and

δΨ(ϑ, t)
|z− ϑ|s .

By choosing ε = C3
2 and δ = C3r2s

2C4
, we can obtain

∂α
t (u(z, t)− u(z, t)) + (−∆g)

su(z, t)− (−∆g)
su(z, t) ≥ 0, (z, t) ∈ Br(z0)× (t0 − r

2s
α , t0 + r

2s
α ].

Due to Equation (22) and the definition of Φ(z, t), we can deduce that

u(z, t)− u(z, t) = u(z, t)− u(z, t)χD(z) ≥ 0 in Bc
r(z

0)× (t0 − r
2s
α , t0 + r

2s
α ],

and
u(z, t)− u(z, t) = u(z, t) ≥ 0 in Br(z0)× (−∞, t0 − r

2s
α ].

Anyway, we have successfully acquired





∂α
t (u(z, t)− u(z, t)) + (−∆g)

su(z, t)− (−∆g)
su(z, t) ≥ 0, in Br(z0)× (t0 − r

2s
α , t0 + r

2s
α ],

u(z, t)− u(z, t) ≥ 0, in Bc
r(z0)× (t0 − r

2s
α , t0 + r

2s
α ],

u(z, t)− u(z, t) ≥ 0, in Br(z0)× (−∞, t0 − r
2s
α ].

From Theorem 3, we have

u(z, t) ≥ u(z, t) in Br(z0)× (t0 − r
2s
α , t0 + r

2s
α ].

Consequently, it can be inferred that

u(z0, t0) ≥ u(z0, t0) = δφ(z0)η(t0) = Cδ =: C1 > 0.

Therefore, we successfully prove Theorem 5. □

Theorem 6. Let D ⊂ ΣΛ. For any z0 ∈ ΣΛ and some t0 ∈ R, assume that there exists a ball,

Br(z0) ⊂ ΣΛ, satisfying Br(z0) ∩ D = ∅, r ≤ dist(z0,TΛ)
2 as shown in Figure 2, and

wΛ(z, t) ≥ C0 > 0 in D× (t0 − r
2s
α , t0 + r

2s
α ]. (24)
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Figure 2. The positional relationship between the region D and the ball Br(z0) in ΣΛ.

Proof. In the process of proving this theorem, the most important step is to construct a
sub-solution for wΛ(z, t). Let

φ(z) =

(
1−

∣∣∣∣
z− z0

r

∣∣∣∣
2)s

+

and φΛ(z) =

(
1−

∣∣∣∣
zΛ − z0

r

∣∣∣∣
2)s

+

.

It is easy to obtain an antisymmetric function with respect to the plane TΛ.

Φ(z) := φ(z)− φΛ(z).

Denote η(t) ∈ C∞
0

(
t0 − r

2s
α , t0 + r

2s
α

)
, where η(t) represents a smooth cut-off function,

satisfying

η(t)





= 1, t ∈ [− r
2s
α

2
+ t0,

r
2s
α

2
+ t0],

∈ [0, 1], t ∈ (−r
2s
α + t0,− r

2s
α

2
+ t0) ∪ (

r
2s
α

2
+ t0, r

2s
α + t0),

= 0, t /∈ (−r
2s
α + t0, r

2s
α + t0).

Let

wΛ(z, t) := wΛ(z, t)χD∪DΛ(z) + δΦ(z)η(t),

where

χD∪DΛ(z) =

{
1, z ∈ D ∪ DΛ,

0, z /∈ D ∪ DΛ,

the domain DΛ is a reflection of the domain D with respect to the plane TΛ, and δ is a
positive constant that will be determined later.

Next, we will prove that wΛ(z, t) is a sub-solution of wΛ(z, t) in Br(z0)× (t0 − r
2s
α , t0 +

r
2s
α ]. This is for (z, t) ∈ Br(z0)× (t0 − r

2s
α , t0 + r

2s
α ]. By Equations (23)–(25), Corollary 5.2

in [30], the properties of g, and r ≤ dist(z0,TΛ)
2 , we obtain

Figure 2. The positional relationship between the region D and the ball Br(z0) in ΣΛ.



Fractal Fract. 2024, 8, 173 13 of 23

Suppose that

wΛ(z, t) ∈ (C1,1
loc(Br(z0)) ∩ Lg(Rn))× (C1([t0 − r

2s
α , t0 + r

2s
α ]) ∩ L−α (R))

is lower semi-continuous for z in Br(z0) and satisfies




∂α
t wΛ(z, t) + (−∆g)

suΛ(z, t)− (−∆g)
su(z, t) ≥ −ε, (z, t) ∈ Br(z0)× (t0 − r

2s
α , t0 + r

2s
α ],

wΛ(z, t) ≥ 0, (z, t) ∈
(
ΣΛ\Br(z0)

)
× (t0 − r

2s
α , t0 + r

2s
α ],

wΛ(z, t) ≥ 0, (z, t) ∈ Br(z0)× (−∞, t0 − r
2s
α ],

wΛ(z, t) = −wΛ(zΛ, t), (z, t) ∈ ΣΛ ×R,

(25)

for some small enough positive constant ε. Consequently, there exists a positive constant C1
such that

wΛ(z0, t0) ≥ C1 > 0.

Proof. In the process of proving this theorem, the most important step is to construct a
sub-solution for wΛ(z, t). Let

φ(z) =

(
1−

∣∣∣∣
z− z0

r

∣∣∣∣
2)s

+

and φΛ(z) =

(
1−

∣∣∣∣
zΛ − z0

r

∣∣∣∣
2)s

+

.

It is easy to obtain an antisymmetric function with respect to the plane TΛ.

Φ(z) := φ(z)− φΛ(z).

Denote η(t) ∈ C∞
0

(
t0 − r

2s
α , t0 + r

2s
α

)
, where η(t) represents a smooth cut-off function,

satisfying

η(t)





= 1, t ∈ [− r
2s
α

2 + t0, r
2s
α

2 + t0],

∈ [0, 1], t ∈ (−r
2s
α + t0,− r

2s
α

2 + t0) ∪ ( r
2s
α

2 + t0, r
2s
α + t0),

= 0, t /∈ (−r
2s
α + t0, r

2s
α + t0).

Let
wΛ(z, t) := wΛ(z, t)χD∪DΛ(z) + δΦ(z)η(t),

where

χD∪DΛ(z) =
{

1, z ∈ D ∪ DΛ,
0, z /∈ D ∪ DΛ,

the domain DΛ is a reflection of the domain D with respect to the plane TΛ, and δ is a
positive constant that will be determined later.

Next, we will prove that wΛ(z, t) is a sub-solution of wΛ(z, t) in Br(z0)× (t0− r
2s
α , t0 + r

2s
α ].

This is for (z, t) ∈ Br(z0)× (t0− r
2s
α , t0 + r

2s
α ]. By Equations (23)–(25), Corollary 5.2 in [29], the

properties of g, and r ≤ dist(z0,TΛ)
2 , we obtain
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∂α
t (wΛ(z, t)− wΛ(z, t)) + (−∆g)

suΛ(z, t)− (−∆g)
su(z, t)− (−∆g)

swΛ(z, t)

≥−ε− δΦ(z)∂α
t η(t)− P.V.

∫

Rn
g
(

δΦ(z)η(t)− wΛ(ϑ, t)
|z− ϑ|s

)
1

|z− ϑ|n+s dϑ

≥−ε− δΦ(z)∂α
t η(t)− (−∆g)

s(δΦ(z)η(t))

+
∫

D∪DΛ

[
g
(

δΦ(z)η(t)
|z− ϑ|s

)
− g
(

δΦ(z)η(t)− wΛ(ϑ, t)
|z− ϑ|s

)]
1

|z− ϑ|n+s dϑ

≥−ε− δΦ(z)∂α
t η(t)− P.V.

∫

Rn
g
(

δΦ(z)η(t)− δΦ(ϑ)η(t)
|z− ϑ|s

)
1

|z− ϑ|n+s dϑ

+
∫

D∪DΛ

g′(ζ1(ϑ, t))wΛ(ϑ, t)

|z− ϑ|n+2s dϑ

≥−ε− δΦ(z)∂α
t η(t)− C2δη(t)P.V.

∫

Rn

g′(ζ2(ϑ, t))(Φ(z)−Φ(ϑ))

|z− ϑ|n+2s dϑ

+C3

∫

D

[
1

|z− ϑ|n+2s −
1

|z− ϑΛ|n+2s

]
dϑ

≥−ε− δC4

r2s − δη(t)
∫

Br((z0)
Λ
)

g′(ζ2(ϑ, t))φΛ(ϑ)

|z− ϑ|n+2s dϑ + C5

≥−ε− δC6

r2s + C5,

where

ζ1(ϑ, t) between
δΦ(z)η(t)
|z− ϑ|s and

δΦ(z)η(t)− wΛ(ϑ, t)
|z− ϑ|s

and

ζ2(ϑ, t) between
δΦ(z)η(t)
|z− ϑ|s and

δΦ(ϑ)η(t)
|z− ϑ|s .

By selecting ε = C5
2 and δ = C5r2s

2C6
, for (z, t) ∈ Br(z0)× (t0 − r

2s
α , t0 + r

2s
α ], we obtain

∂α
t (wΛ(z, t)− wΛ(z, t)) + (−∆g)

suΛ(z, t)− (−∆g)
su(z, t)− (−∆g)

swΛ(z, t) ≥ 0.

By Equation (25), we obtain

wΛ(z, t)− wΛ(z, t) = wΛ(z, t)− wΛ(z, t)χD∪DΛ(z) ≥ 0 in
(

ΣΛ\Br(z0)
)
× (t0 − r

2s
α , t0 + r

2s
α ].

and
wΛ(z, t)− wΛ(z, t) = wΛ(z, t) ≥ 0 in Br(z0)× (−∞, t0 − r

2s
α ].

Anyway, we have successfully acquired




∂α
t (wΛ(z, t)− wΛ(z, t)) + (−∆g)

suΛ(z, t)− (−∆g)
su(z, t)− (−∆g)

swΛ(z, t) ≥ 0,
in Br(z0)× (t0 − r

2s
α , t0 + r

2s
α ],

wΛ(z, t)− wΛ(z, t) ≥ 0, in
(
ΣΛ\Br(z0)

)
× (t0 − r

2s
α , t0 + r

2s
α ],

wΛ(z, t)− wΛ(z, t) ≥ 0, in Br(z0)× (−∞, t0 − r
2s
α ],

wΛ(z, t)− wΛ(z, t) = −
(
wΛ
(
zΛ, t

)
− wΛ

(
zΛ, t

))
, in ΣΛ ×R.

From Theorem 4, we obtain

wΛ(z, t) ≥ wΛ(z, t) in Br(z0)× (t0 − r
2s
α , t0 + r

2s
α ].
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Consequently, it can be inferred that

wΛ(z0, t0) ≥ wΛ(z
0, t0) = δφ(z0)η(t0) = δ =: C1 > 0.

□

Remark 1. The average effect shows that the positiveness of the solution of the fractional time-
diffusion equation in some region D will spread to any other region B that does not intersect D. The
average effect is influenced by the distance between the two regions, and the shorter the distance, the
more significant the effect.

4. Application of Direct Moving Plane Method

In this section, in combination with the maximum principles and the average effects
described above, the monotonicity of the positive solution for Equation (26) in half space is
established by the direct moving plane method. Consider
{

∂α
t u(z, t) + (−∆g)

su(z, t) = ln|uq(z, t) + 1|+ ln|up(z, t) + 1|, in Rn
+ ×R,

u(z, t) = 0, in
(
Rn\Rn

+

)
×R.

(26)

where Rn
+ := {z ∈ Rn | z1 > 0} represents the right half space and p, q ≥ 1.

Theorem 7. Assume that u(z, t) ∈ (C1,1
loc(R

n
+) ∩ Lg(Rn)) × (C1(R) ∩ L−α (R)) is a positive

solution of Equation (26) and u(z, t) is uniformly continuous in z. If

u(z, t) ≤ C(1 + |z|ν) f or some 0 < ν < 2s,

then the positive solution u(z, t) of Equation (26) is strictly increasing in half space along the
z1-direction for any t ∈ R.

Proof. By performing a direct calculation, it follows that




∂α
t wΛ(z, t) + (−∆g)

suΛ(z, t)− (−∆g)
su(z, t) =

(
qξ

q−1
1 (z,t)

ξ
q
1(z,t)+1

+
pξ

p−1
2 (z,t)

ξ
p
2 (z,t)+1

)
wΛ(z, t),

(z, t) ∈ ΩΛ ×R,
wΛ(z, t) ≥ 0, (z, t) ∈ (ΣΛ\ΩΛ)×R,
wΛ(z, t) = −wΛ(zΛ, t), (z, t) ∈ ΣΛ ×R.

(27)

where ξ1(z, t) and ξ2(z, t) fall in-between uΛ(z, t) and u(z, t). To obtain our result, we just
need to show that

wΛ(z, t) > 0 in ΩΛ ×R,

for any Λ > 0. The proof will be divided into three distinct steps.
Step 1: By starting from z1 = 0 and moving the plane TΛ toward the right along the

z1-axis. With the assumption of Theorem 7, we can apply Theorem 1 to Equation (27) for
Λ > 0 small enough; therefore, we have

wΛ(z, t) ≥ 0 for (z, t) ∈ ΩΛ ×R. (28)

Obviously, when Λ > 0 is small enough, ΩΛ is a narrow region. The starting point of
the moving plane TΛ is provided by inequality (28).

Step 2: We proceed with the continuous movement of the plane TΛ along the z1-axis
toward the right, ensuring that inequality (28) remains valid until the plane reaches its
limiting position. Let

Λ0 = sup {Λ|wµ(z, t) ≥ 0, (z, t) ∈ Σµ ×R for any µ ≤ Λ}.
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Next, our goal is to prove
Λ0 = +∞. (29)

Otherwise, if 0 < Λ0 < +∞, according to its definition, we can find a sequence, Λk,
with Λk > Λ0 such that Λk → Λ0 when k→ ∞ ; then, we have

Σ−Λk
×R := {(z, t) ∈ ΣΛk ×R|wΛk (z, t) < 0}

that is nonempty and inf
ΣΛk
×R

wΛk (z, t) < 0. First of all, we need to demonstrate that

inf
ΣΛk
×R

wΛk (z, t)→ 0 as k→ ∞. (30)

If this assumption does not hold, it follows that there is a positive constant M, satisfying

inf
ΣΛk
×R

wΛk (z, t) < −M < 0.

Thus, we can find a sequence, {(zk, tk)} ⊂ ΣΛk ×R, such that

wΛk (z
k, tk) ≤ −M < 0. (31)

It follows that either zk is between TΛ0 and TΛk or zk ∈ ΩΛ0 . When zk is between TΛ0

and TΛk , then combining Λk → Λ0 as k→ ∞ and the uniform continuity of u(z, t) in z, we
can obtain

wΛk (z
k, tk) = uΛk (z

k, tk)− u(zk, tk)→ 0 as k→ ∞.

This contradicts Equation (31).
When zk ∈ ΩΛ0 , we have

wΛk (z
k, tk)− wΛ0(z

k, tk) = uΛk (z
k, tk)− uΛ0(z

k, tk)→ 0 as k→ ∞.

However, by Equation (31) and wΛ0(z
k, tk) ≥ 0, we derive

wΛk (z
k, tk)− wΛ0(z

k, tk) ≤ −M < 0.

This is a contradiction. So, Equation (30) is valid, and we infer that

inf
ΣΛk
×R

wΛk (z, t) =: −mk → 0 as k→ ∞. (32)

In the following, denote

hk := sup
Σ−Λk
×R

(
qξ

q−1
1 (z, t)

ξ
q
1(z, t) + 1

+
pξ

p−1
2 (z, t)

ξ
p
2 (z, t) + 1

)
,

with ξ1(z, t) and ξ2(z, t) falling in-between uΛk (z, t) and u(z, t). There are two possible
cases that arise from the above analysis.

Case 1. If hk ≤ εk → 0 as k→ ∞ , let Λ = Λk, and by applying Theorem 2 to problem
(27), it follows that

wΛk (z, t) ≥ 0 in ΣΛk ×R

for a large enough k. This is inconsistent with the definition of Λk, hence the contradiction.
Case 2. If hk ↛ 0 when k→ ∞ , it implies that there exist δ0 > 0 and a subse-

quence of {hk} (which we will still denote as {hk}), satisfying hk ≥ δ0 > 0. Since
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(ln|uq(z, t) + 1|+ ln|up(z, t) + 1|)′ = 0 when u(z, t) = 0 and regarding Equation (32),
we can infer that there exist ε0 > 0 along with a sequence, {(zk, tk)} ⊂ Σ−Λk

×R, such that

u(zk, tk) ≥ ε0 > 0

and
wΛk (z

k, tk) = −mk + σm2
k < 0,

where σ ≥ 0. Combining the fact that u(z, t) = 0 in (Rn\Rn
+)×R with the fact that u(z, t)

are continuous, there exists r0 > 0, which is irrespective of k, such that

u(z, t) ≥ ε0

2
> 0 for (z, t) ∈ Br0(z

0)× (tk − r
2s
α

0 , tk + r
2s
α

0 ] ⊂ Rn
+ ×R. (33)

Next, we show that δk := dist(zk, TΛk ) = Λk − zk
1 is bounded and δk ̸= 0 for a large

enough k. If not, it follows that δk → 0 as k→ ∞ . Let

vk(z, t) := wΛk (z, t)− σm2
kηk(z, t),

where ηk(z, t) is a series of smooth cut-off functions,

ηk(z, t) = η(
z− zk

δk
− t− tk

δ
2s
α

k

) ∈ C∞
0 (Bδk (z

k)× (−δ
2s
α

k + tk, δ
2s
α

k + tk)),

satisfying

ηk(z, t)





= 1, (z, t) ∈ B δk
2
(zk)× (− δ

2s
α

k
2 + tk, δ

2s
α

k
2 + tk),

∈ [0, 1], (z, t) ∈ [Bδk (z
k)\B δk

2
(zk)]× [(−δ

2s
α

k + tk,− δ
2s
α

k
2 + tk) ∪ (

δ
2s
α

k
2 + tk, r

2s
α + tk)],

= 0, (z, t) /∈ Bδk (z
k)× (tk − δ

2s
α

k , tk + δ
2s
α

k ).

Denote
Qδk (z

k, tk) := Bδk (z
k)× (tk − δ

2s
α

k , tk + δ
2s
α

k ),

therefore, direct calculation can be obtained.

vk(zk, tk) = wΛk (z
k, tk)−m2

kηk(zk, tk) = −mk + σm2
k − σm2

k = −mk,

and
vk(z, t) = wΛk (z, t) ≥ −mk in Qc

δk
(zk, tk) ∩ (ΣΛk ×R).

Then, there exists a point (zk, tk
) and (zk, tk

) ∈ Qδk (z
k, tk) such that

−mk − σm2
k ≤ vk(zk, tk

) = inf
ΣΛk
×R

vk(z, t) ≤ −mk.

By definition of vk, we have

−mk ≤ wΛk (z
k, tk

) ≤ −mk + σm2
k < 0.

For the minimum point (zk, tk
) of vk(z, t), we have

∂α
t vk(zk, tk

) = Cα

∫ tk

−∞

vk(zk, tk
)− vk(zk, τ)

(tk − τ)
1+α

dτ ≤ 0,

and
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(−∆g)
svk(zk, tk

)

=P.V.

(∫

ΣΛk

+
∫

Σc
Λk

)
g

(
vk(zk, tk

)− vk(ϑ, tk
)

|zk−ϑ|s

)
1

|zk−ϑ|n+s dϑ

≤C P.V.
∫

ΣΛk

g

(
2vk(zk, tk

) + σm2
kηk(ϑ, tk

)

|zk − ϑΛk |s

)
1

|zk − ϑΛk |n+s
dϑ

≤C P.V.
∫

ΣΛk

g

(
2vk(zk, tk

)

|zk − ϑΛk |s

)
1

|zk − ϑΛk |n+s
dϑ + C P.V.

∫

ΣΛk

g

(
σm2

kηk(ϑ, tk
)

|zk − ϑΛk |s

)
1

|zk − ϑΛk |n+s
dϑ

≤− C
δ2s

k
+

Cm2
k

δ2s
k

.

By Equation (27), Corollary 5.2 in [29], and properties of g, it follows that

∂α
t vk(zk, tk

) + (−∆g)
svk(zk, tk

)

=∂α
t wΛk (z

k, tk
) + (−∆g)

suΛk (z
k, tk

)− (−∆g)
su(zk, tk

)− σm2
k∂α

t ηk(zk, tk
)

+(−∆g)
svk(zk, tk

)− [(−∆g)
suΛk (z

k, tk
)− (−∆g)

su(zk, tk
)]

≥



qξ
q−1
1

(
zk, tk

)

ξ
q
1

(
zk, tk

)
+ 1

+
pξ

p−1
2

(
zk, tk

)

ξ
p
2

(
zk, tk

)
+ 1


wΛk (z

k, tk
)− Cm2

k
δ2s

k

−C P.V.
∫

Rn

g′(ζ(ϑ, tk
))(wΛk (z

k, tk
)− wΛk (ϑ, tk

))

|zk−ϑ|n+2s dϑ

≥



qξ
q−1
1

(
zk, tk

)

ξ
q
1

(
zk, tk

)
+ 1

+
pξ

p−1
2

(
zk, tk

)

ξ
p
2

(
zk, tk

)
+ 1


wΛk (z

k, tk
)− Cm2

k
δ2s

k

−C
∫

ΣΛk

g′(ζ(ϑ, tk
))(wΛk (z

k, tk
)− wΛk (ϑ, tk

))

|zk − ϑΛk |n+2s
dϑ− C

∫

ΣΛk

g′(ζ(ϑ, tk
))(wΛk (z

k, tk
) + wΛk (ϑ, tk

))

|zk − ϑΛk |n+2s
dϑ

≥−CwΛk (z
k, tk

)− Cm2
k

δ2s
k
− C

∫

ΣΛk

g′(ζ(ϑ, tk
))2wΛk (z

k, tk
)

|zk − ϑΛk |n+2s
dϑ

≥−Cmk −
Cm2

k
δ2s

k
,

where

g′(ζ(ϑ, tk
)) between

uΛk (z
k, tk

)− uΛk (ϑ, tk
)∣∣∣zk − ϑ

∣∣∣
s and

u(zk, tk
)− u(ϑ, tk

)∣∣∣zk − ϑ
∣∣∣
s ,

and
ξ1(zk, tk

) and ξ2(zk, tk
) fall in between uΛk (z

k, tk
) and u(zk, tk

).

In summary, we obtain

− C
δ2s

k
≥ −Cmk −

Cm2
k

δ2s
k

.

The inequality is multiplied by −δ2s
k on both sides; then, by Equation (32) and the

assumption lim
k→∞

δk = 0, we have

0 < C ≤ Cmkδ2s
k + Cm2

k → 0 as k→ ∞.
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This is a contradiction. So, δk is bounded and lim
k→∞

δk ̸= 0 for sufficiently large k. In

addition, since Λk → Λ0 when k→ ∞ , we can infer that there is a subsequence of {zk, tk}
(which we will also denote as {zk, tk}), satisfying {zk, tk} ⊂ ΣΛ0 ×R and dist {zk, TΛ0} ≥
δ0 > 0. According to Equation (33), we further choose a radius, r1 := min {r0, δ0}, such that

u(z, t) ≥ ε0

2
> 0 in Br1(z

k)× (tk − r
2s
α

1 , tk + r
2s
α

1 ] ⊂ ΩΛ0 ×R. (34)

Before continuing, let zk = (2Λ0, (zk)
′
), since dist(TΛ0 , T2Λ0) = Λ0 > 2r1; then, we

have Br1(zk) ∩ B2r1(z
k) = ∅. Next, we demonstrate that there exists a positive constant ε1

such that
u(z, t) ≥ ε1 > 0 in Br1(z

k)× (tk − r
2s
α

1 , tk + r
2s
α

1 ]. (35)

Otherwise, we have

u(z, t) < ε in Br1(z
k)× (tk − r

2s
α

1 , tk + r
2s
α

1 ] for any ε > 0, (36)

then, we derive

|(ln|uq(z, t) + 1|+ ln|up(z, t) + 1|)− (ln|0q + 1|+ ln|0p + 1|)| ≤ C|(u(z, t))− 0| < Cε.

Furthermore, it follows that

ln|uq(z, t) + 1|+ ln|up(z, t) + 1| ≥ −Cε in Br1(z
k)× (tk − r

2s
α

1 , tk + r
2s
α

1 ] for any ε > 0.

Then, by combining Theorem 5, Equations (26) and (34) and u(z, t) are continuous,
and it follows that

u(z, t) ≥ ε1 > 0, (z, t) ∈ B r1
2
(zk)×

(
tk − (

r1

2
)

2s
α , tk + (

r1

2
)

2s
α

]
,

which contradicts with Equation (36). So, we obtain Equation (35).
Let ẑk = (0, (zk)

′
). Due to the fact that u(z, t) = 0 in (Rn\Rn

+) × R and u(z, t) are
continuous, there exists r2 < r1

2 , which is irrespective of k, such that

u(z, t) ≤ ε1

2
, (z, t) ∈ (Br2(ẑ

k) ∩Rn
+)× (tk − r

2s
α

1 , tk + r
2s
α

1 ]. (37)

For any point z ∈ Br2(ẑ
k) ∩Rn

+, zΛ0 denotes the reflection point of z about TΛ0 , and
zΛ0 ∈ Br2(z

k) ∩ Σ2Λ0 ⊂ B r1
2
(zk). Combining Equations (35) and (37), we obtain

wΛ0(z, t) = uΛ0(z, t)− u(z, t) ≥ ε1 −
ε1

2
=

ε1

2
> 0, (z, t) ∈ (Br2(ẑ

k) ∩Rn
+)× (tk − r

2s
α

1 , tk + r
2s
α

1 ]. (38)

Now, we mainly show that there is a positive constant ε2, such that

wΛ0(z, t) ≥ ε2 > 0 for (z, t) ∈ B r1
2
(zk)×

(
tk − (

r1

2
)

2s
α , tk + (

r1

2
)

2s
α

]
. (39)

If not, we obtain

wΛ0(z, t) < ε for (z, t) ∈ B r1
2
(zk)×

(
tk − (

r1

2
)

2s
α , tk + (

r1

2
)

2s
α

]
for any ε > 0. (40)

Combining Equation (27) and the definition of Λ0, it follows that
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



∂α
t wΛ0(z, t) + (−∆g)

suΛ0(z, t)− (−∆g)
su(z, t) =

(
qξ

q−1
1 (z,t)

ξ
q
1(z,t)+1

+
pξ

p−1
2 (z,t)

ξ
p
2 (z,t)+1

)
wΛ0(z, t),

in B r1
2
(zk)×

(
tk − ( r1

2 )
2s
α , tk + ( r1

2 )
2s
α

]
,

wΛ0(z, t) ≥ 0, in
(

ΣΛ0\B r1
2
(zk)

)
×
(

tk − ( r1
2 )

2s
α , tk + ( r1

2 )
2s
α

]
,

wΛ0(z, t) ≥ 0, in B r1
2
(zk)×

(
−∞, tk + ( r1

2 )
2s
α

]
.

where ξ1(z, t) and ξ2(z, t) fall in-between uΛ0(z, t) and u(z, t). Then, by Equation (40) and

the boundedness of
(

qξ
q−1
1 (z,t)

ξ
q
1(z,t)+1

+
pξ

p−1
2 (z,t)

ξ
p
2 (z,t)+1

)
, we have

(
qξ

q−1
1 (z, t)

ξ
q
1(z, t) + 1

+
pξ

p−1
2 (z, t)

ξ
p
2 (z, t) + 1

)
wΛ0(z, t) > −Cε, (z, t) ∈ B r1

2
(zk)×

(
tk − (

r1

2
)

2s
α , tk + (

r1

2
)

2s
α

]

for any ε > 0. Hence, by Equation (38), Theorem 6 and u(z, t) are continuous, and we obtain

wΛ0(z, t) ≥ ε2 > 0, (z, t) ∈ B r1
4
(zk)×

(
tk − (

r1

4
)

2s
α , tk + (

r1

4
)

2s
α

]

for some positive constant ε2, which contradicts with Equation (40). So, we obtain
Equation (39). Moreover, by utilizing the continuity of wΛ(z, t), Λk → Λ0 when k→ ∞
and Equation (39), we can ultimately derive

wΛk (z, t) ≥ ε2

2
> 0 in B r1

2
(zk)×

(
tk − (

r1

2
)

2s
α , tk + (

r1

2
)

2s
α

]
,

which means that wΛk (z
k, tk) ≥ ε2

2 > 0 for a large enough k. Therefore, this contradicts the
assumption that the sequence {(zk, tk)} ⊂ Σ−Λk

×R; then, we must have Λ0 = +∞.
Step 3: Our most critical step is to prove that the positive solution u(z, t) of Equa-

tion (26) is strictly increasing in half space along the z1-direction for any t ∈ R.
Based on the previous two steps, for any Λ > 0, we derive

wΛ(z, t) ≥ 0 in ΣΛ ×R.

In fact, we just have to prove that

wΛ(z, t) > 0 in ΩΛ ×R for any Λ > 0. (41)

Assume that Equation (41) is invalid; there must be a point, (z0, t0) ∈ ΩΛ0 ×R, and
Λ0 > 0 such that

wΛ0(z
0, t0) = min

ΣΛ0×R
wΛ0(z, t) = 0.

By wΛ0(z, t0) ̸= 0 in ΣΛ0 , u(z, t) = 0 in (R\Rn
+)×R, 1

|z0−ϑΛ0 |n+2s < 1
|z0−ϑ|n+2s in ΣΛ0 ,

and the properties of g, we obtain
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∂α
t wΛ0(z

0, t0) + (−∆g)
suΛ0(z

0, t0)− (−∆g)
su(z0, t0)

=Cα

∫ t0

−∞

wΛ0(z
0, t0)− wΛ0(z

0, τ)

(t0 − τ)1+α
dτ

+P.V.
∫

Rn

[
g

(
uΛ0(z

0, t0)− uΛ0(ϑ, t0)

|z0−ϑ|s
)
− g
(

u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s
)]

1
|z0−ϑ|n+s dϑ

≤P.V.
∫

Rn

g′(ϑ, t0)(wΛ0(z
0, t0)− wΛ0(ϑ, t0))

|z0 − ϑ|n+2s dϑ

≤P.V.
∫

ΣΛ0

wΛ0(ϑ, t0)g′(ϑ, t0)

(
1

|z0 − ϑΛ0 |n+2s −
1

|z0−ϑ|n+2s

)
dϑ

<0,

where

g′(ϑ, t0) between
uΛ0(z

0, t0)− uΛ0(ϑ, t0)

|z0−ϑ|s and
u(z0, t0)− u(ϑ, t0)

|z0−ϑ|s .

This contradicts

∂α
t wΛ0(z

0, t0) + (−∆g)
suΛ0(z

0, t0)− (−∆g)
su(z0, t0) = 0.

Then, Equation (41) is valid.
Finally, for every fixed t ∈ R, utilizing Equation (41), for any z = (z1, z′) and ẑ =

(ẑ1, z′) in Rn
+, and satisfying z1 < ẑ1, when we select Λ = z1+ẑ1

2 , we can conclude that

0 < wΛ(z, t) = uΛ(z, t)− u(z, t) = u(ẑ, t)− u(z, t).

Therefore, we prove that the positive solution u(z, t) of Equation (26) is strictly increas-
ing in half space along the z1-direction for any t ∈ R. □

Example 1. Consider the following equation:

{
∂

1
4
t u(z, t) + (−∆g)

1
2 u(z, t) = ln

∣∣u2(z, t) + 1
∣∣+ ln

∣∣u3(z, t) + 1
∣∣, in R2

+ ×R,
u(z, t) = 0, in

(
R2\R2

+

)
×R.

(42)

If u(z, t) ≤ C(1 + |z| 12 ) is a positive solution to Equation (42), then according to
Theorem 7, the positive solution u(z, t) of Equation (42) is strictly increasing in R2

+ along
the z1-direction for any t ∈ R.

5. Conclusions

In this paper, we study the double index logarithmic nonlinear fractional g-Laplacian
parabolic equations with the Marchaud fractional time derivatives ∂α

t by using the direct
moving plane method. We successfully overcome the difficulties caused by the double
non-locality of space-time and the nonlinearity of the fractional g-Laplacian. The results of
this paper provide an important tool and method for the study of qualitative properties
of solutions, especially for the unbounded solutions of fractional elliptic and parabolic
problems. In the future work, we will continue to deeply study other properties and
numerical simulations of this class of equations and explore its real-world applications.
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