Quasi-P-Wave Reverse Time Migration in TTI Media with a Generalized Fractional Convolution Stencil
Abstract
:1. Introduction
2. Methodology
2.1. Pure Quasi-P-Wave Equation in TTI Media
2.2. Approximating the Pseudo-Differential Operator Using a Generalized Fractional Convolution Stencil
2.3. Numerical Implementation in Modeling and RTM
- In regions with non-elliptical anisotropy, load the convolution stencils from the fractional convolution stencil library based on the anisotropic parameters.
- Convolve the convolution stencil with the stress field as to correct the non-elliptically anisotropic effects.
- Use the central finite-difference scheme to calculate , and of the corrected stress field .
- Update the wavefield using the second-order equation finite in time .
3. Numerical Examples
3.1. Homogeneous Model
3.2. Overthrust TTI Model
3.3. 2007 BP TTI Model
3.4. Marmousi TTI Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baysal, E.; Kosloff, D.D.; Sherwood, J.W. Reverse time migration. Geophysics 1983, 48, 1514–1524. [Google Scholar] [CrossRef]
- McMechan, G.A. Migration by extrapolation of time-dependent boundary values. Geophys. Prospect. 1983, 31, 413–420. [Google Scholar] [CrossRef]
- Whitmore, N.D. Iterative depth migration by backward time propagation. In SEG Technical Program Expanded Abstracts 1983; Society of Exploration Geophysicists: Houston, TX, USA, 1983; pp. 382–385. [Google Scholar]
- Zhang, Y.; Zhang, H.; Zhang, G. A stable TTI reverse time migration and its implementation. Geophysics 2011, 76, WA3–WA11. [Google Scholar] [CrossRef]
- Mu, X.; Huang, J.; Li, Z.; Liu, Y.; Su, L.; Liu, J. Attenuation compensation and anisotropy correction in reverse time migration for attenuating tilted transversely isotropic media. Surv. Geophys. 2022, 43, 737–773. [Google Scholar] [CrossRef]
- Qiao, Z.; Chen, T.; Sun, C. Anisotropic Attenuation Compensated Reverse Time Migration of Pure qP-Wave in Transversely Isotropic Attenuating Media. Surv. Geophys. 2022, 43, 1435–1467. [Google Scholar] [CrossRef]
- Nemeth, T.; Wu, C.; Schuster, G.T. Least-squares migration of incomplete reflection data. Geophysics 1999, 64, 208–221. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.; Li, Z.; Zhu, H.; McMechan, G.; Zhang, J.; Hu, C.; Zhao, Y. Mitigating velocity errors in least-squares imaging using angle-dependent forward and adjoint Gaussian beam operators. Surv. Geophys. 2021, 42, 1305–1346. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, Y.; Zhang, H.; Young, J. Subsalt imaging using TTI reverse time migration. Lead. Edge 2009, 28, 448–452. [Google Scholar] [CrossRef]
- Thomsen, L. Weak elastic anisotropy. Geophysics 1986, 51, 1954–1966. [Google Scholar] [CrossRef]
- Sripanich, Y.; Fomel, S.; Sun, J.; Cheng, J. Elastic wave-vector decomposition in heterogeneous anisotropic media. Geophys. Prospect. 2017, 65, 1231–1245. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Zhao, Y.; Zhu, H. Elastic wavefield separation in anisotropic media based on eigenform analysis and its application in reverse-time migration. Geophys. J. Int. 2019, 217, 1290–1313. [Google Scholar] [CrossRef]
- Yan, J.; Sava, P. Elastic wave mode separation for tilted transverse isotropy media. Geophys. Prospect. 2012, 60, 29–48. [Google Scholar] [CrossRef]
- Yong, P.; Huang, J.; Li, Z.; Liao, W.; Qu, L.; Li, Q.; Yuan, M. Elastic-wave reverse-time migration based on decoupled elastic-wave equations and inner-product imaging condition. J. Geophys. Eng. 2016, 13, 953–963. [Google Scholar] [CrossRef]
- Alkhalifah, T. An acoustic wave equation for anisotropic media. Geophysics 2000, 65, 1239–1250. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, G.; Bloor, R. An anisotropic acoustic wave equation for VTI media. In Proceedings of the 68th EAGE Conference and Exhibition incorporating SPE EUROPEC 2006, Vienna, Austria, 12–15 June 2006; EAGE Publications BV: Bunnik, The Netherlands, 2006; p. cp-2. [Google Scholar]
- Du, X.; Bancroft, J.C.; Lines, L.R. Anisotropic reverse-time migration for tilted TI media. Geophys. Prospect. 2007, 55, 853–869. [Google Scholar] [CrossRef]
- Duveneck, E.; Milcik, P.; Bakker, P.M.; Perkins, C. Acoustic VTI wave equations and their application for anisotropic reverse-time migration. In SEG Technical Program Expanded Abstracts 2008; Society of Exploration Geophysicists: Houston, TX, USA, 2008; pp. 2186–2190. [Google Scholar]
- Liu, F.; Morton, S.A.; Jiang, S.; Ni, L.; Leveille, J.P. Decoupled wave equations for P and SV waves in an acoustic VTI media. In Proceedings of the 2009 SEG Annual Meeting, Houston, TX, USA, 25–30 October 2009; OnePetro: Richardson, TX, USA, 2009. [Google Scholar]
- Xue, Z.; Ma, Y.; Wang, S.; Hu, H.; Li, Q. A Multi-Task Learning Framework of Stable Q-Compensated Reverse Time Migration Based on Fractional Viscoacoustic Wave Equation. Fractal Fract. 2023, 7, 874. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Shi, Y.; Wang, N.; Han, L. High-Accuracy Simulation of Rayleigh Waves Using Fractional Viscoelastic Wave Equation. Fractal Fract. 2023, 7, 880. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, S.; Liu, X. Finite Difference Scheme and Finite Volume Scheme for Fractional Laplacian Operator and Some Applications. Fractal Fract. 2023, 7, 868. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, H. Accurate simulations of pure quasi-P-waves in complex anisotropic media. Geophysics 2014, 79, T341–T348. [Google Scholar] [CrossRef]
- Xu, S.; Tang, B.; Mu, J.; Zhou, H. Quasi-P wave propagation with an elliptic differential operator. In SEG Technical Program Expanded Abstracts 2015; Society of Exploration Geophysicists: Houston, TX, USA, 2015; pp. 4380–4384. [Google Scholar]
- Chu, C.; Macy, B.K.; Anno, P.D. Pure acoustic wave propagation in transversely isotropic media by the pseudospectral method. Geophys. Prospect. 2013, 61, 556–567. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H. A finite-difference approach for solving pure quasi-P-wave equations in transversely isotropic and orthorhombic media. Geophysics 2018, 83, C161–C172. [Google Scholar] [CrossRef]
- Fomel, S.; Ying, L.; Song, X. Seismic wave extrapolation using lowrank symbol approximation. Geophys. Prospect. 2013, 61, 526–536. [Google Scholar] [CrossRef]
- Song, X.; Fomel, S.; Ying, L. Lowrank finite-differences and lowrank Fourier finite-differences for seismic wave extrapolation in the acoustic approximation. Geophys. J. Int. 2013, 193, 960–969. [Google Scholar] [CrossRef]
- Alkhalifah, T. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy. Geophys. Prospect. 2014, 62, 1089–1099. [Google Scholar] [CrossRef]
- Zhang, Z.d.; Liu, Y.; Alkhalifah, T.; Wu, Z. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation. Geophys. J. Int. 2018, 213, 48–57. [Google Scholar] [CrossRef]
- Wu, Z.; Alkhalifah, T.; Zhang, Z. A partial-low-rank method for solving acoustic wave equation. J. Comput. Phys. 2019, 385, 1–12. [Google Scholar] [CrossRef]
- Wang, R.; Feng, Q.; Ji, J. The discrete convolution for fractional cosine-sine series and its application in convolution equations. AIMS Math. 2024, 9, 2641–2656. [Google Scholar] [CrossRef]
- Hashemi, M. A variable coefficient third degree generalized Abel equation method for solving stochastic Schrödinger–Hirota model. Chaos Solitons Fractals 2024, 180, 114606. [Google Scholar] [CrossRef]
- Kai, Y.; Chen, S.; Zhang, K.; Yin, Z. Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation. Waves Random Complex Media 2022, 1–12. [Google Scholar] [CrossRef]
- Nikonenko, Y.; Charara, M. Explicit finite-difference modeling for the acoustic scalar wave equation in tilted transverse isotropic media with optimal operators. Geophysics 2023, 88, T65–T73. [Google Scholar] [CrossRef]
- Achenbach, J. Wave Propagation in Elastic Solids; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Coleman, T.F.; Li, Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 1996, 6, 418–445. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, S.; Yang, J.; Qin, N.; Huang, J.; Tian, K. Quasi-P-Wave Reverse Time Migration in TTI Media with a Generalized Fractional Convolution Stencil. Fractal Fract. 2024, 8, 174. https://doi.org/10.3390/fractalfract8030174
Qin S, Yang J, Qin N, Huang J, Tian K. Quasi-P-Wave Reverse Time Migration in TTI Media with a Generalized Fractional Convolution Stencil. Fractal and Fractional. 2024; 8(3):174. https://doi.org/10.3390/fractalfract8030174
Chicago/Turabian StyleQin, Shanyuan, Jidong Yang, Ning Qin, Jianping Huang, and Kun Tian. 2024. "Quasi-P-Wave Reverse Time Migration in TTI Media with a Generalized Fractional Convolution Stencil" Fractal and Fractional 8, no. 3: 174. https://doi.org/10.3390/fractalfract8030174
APA StyleQin, S., Yang, J., Qin, N., Huang, J., & Tian, K. (2024). Quasi-P-Wave Reverse Time Migration in TTI Media with a Generalized Fractional Convolution Stencil. Fractal and Fractional, 8(3), 174. https://doi.org/10.3390/fractalfract8030174